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Preface
Can computers compute? We all learn the notion of arithmetic computation in school and

soon start to associate it with real numbers and operations on them. Unfortunately, our

platforms including hardware, languages and environments, have no reliable support for

computing with arbitrary real numbers. Numerous software packages perform impressive

counts of approximate arithmetic operations per second, allowing us to understand complex

phenomena in science and engineering. Moreover, embedded controllers are in charge of

our cars, trains, and airplanes. Yet this essential infrastructure offers little guarantees that the

computations follow real-numbered mathematical models by which they were inspired.

The floating-point arithmetic standard is helpful in ensuring that individual operations are per-

formed according to precision requirements. These are, however, guarantees at the machine

instruction level. The main challenge remains to estimate how roundoff errors of individual

instructions compose into the error on the overall algorithm. Programming languages (since

FORTRAN) have made great progress in abstracting exact machine instructions into larger

computation chunks that we can reason about at the source code level. Unfortunately, ap-

proximate computations do not abstract and compose as easily. It is tempting to combine

errors of individual operations independently, as in interval arithmetic, but this proves to be

too pessimistic. Our ability to perform so many individual operations quickly bites us back,

resulting in correct, but useless, estimates. Affine arithmetic computation turns out to be

an improvement, and this thesis shows its first use that is compatible with floating points.

Unfortunately, it is not only that the errors accumulate, but also that they are highly dependent

on the ranges of values. Any precise analysis of error propagation needs to include the analysis

of ranges of values.

This thesis presents analysis techniques that estimate the errors and sensitivity to errors in

computations. The techniques involve much deeper reasoning about real number computa-

tions than what compilers perform today. Moreover, it proposes an ideal programming model

that is much more friendly to users: programs can be written in terms of real numbers along

with specifications of the desired error tolerance. The question of error bounds becomes the

question of correct compilation, instead of a manual verification issue for users. Such a model

also opens up optimization opportunities that rely on reasoning with real numbers. This

includes fundamental properties such as associativity of addition, which does not hold for

floating points, yet is needed for, e.g., parallelization of summations. The thesis shows that it

is possible to automatically find equivalent algebraic expressions that improve the precision

compared to the originally given expression.
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Preface

Whether the implementation is derived automatically or manually, the fundamental problem

of computing the worst-case error bound on the entire program remains. When we perform

forward computation from initial values, we need to maintain the information about our

result as precisely as possible, taking into account known algebraic properties of operations

and any invariants that govern the computation process. To compute bounds automatically, it

is natural to examine decision procedures for non-linear arithmetic, whose implementations

within solvers such as Z3 have become increasingly usable. It is tempting to consider the

entire problem of approximate computation as asking a theorem prover a series of questions.

However, the automated provers use algorithms with super-exponential running times, so we

must delimit the size of queries we ask, and must be prepared for a failure as an answer. In

other words, these provers are only a subroutine in techniques tailored towards worst-case

error estimation.

For self-stabilizing computations that find, e.g., zeros of a function, we can avoid tracking

dependencies across loop iterations. In such situations, we can estimate how good our

solution is if we know the bounds on the derivatives of functions we are computing with. The

notion of derivatives of functions turns out to be as fundamental in automatically estimating

errors as it is in real analysis. Together with bounding the ranges of values and performing

non-linear constraint solving, derivatives become one of the main tools used for automated

error computation presented in this thesis. Derivatives are crucial, for example, to compute

propagation of errors in a modular fashion, or to find closed forms of errors after any number

of loop iterations.

Programs handled by the techniques in this thesis need not denote continuous functions.

Indeed, the widespread use of conditionals makes it very easy for software to contain disconti-

nuities. Techniques introduced in the thesis can show the desired error bounds even for such

programs with conditionals, where a real valued computation follows on one branch, whereas

the approximate computation follows a different branch.

Real numbers, as their set-theoretic definitions suggest, are inherently more involved than

integers. Approximation of real number operations seems necessary for computability. With

emerging hardware models, approximation also presents an opportunity for more energy-

efficient solutions. To reason and compile approximate computations we need new analysis

techniques of the sort presented in this thesis: techniques that estimate variable ranges by

solving possibly non-linear constraints and accounting for variable dependencies, that lever-

age the self-stabilizing nature of algorithms, and that use derivatives of algebraic expressions

while soundly supporting conditionals. This thesis presents a comprehensive set of techniques

that address these problems, from the point of view of both verification and synthesis of code.

The resulting implementations are all publicly available in source code.

Thanks to these techniques, thinking in terms of real numbers is becoming closer to reality,

even for software developers.

Lausanne, 15 October 2014 Viktor Kunčak
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Abstract
Numerical software, common in scientific computing or embedded systems, inevitably uses

an approximation of the real arithmetic in which most algorithms are designed. In many

domains, roundoff errors are not the only source of inaccuracy and measurement as well as

truncation errors further increase the uncertainty of the computed results. Adequate tools are

needed to help users select suitable approximations (data types and algorithms) which satisfy

their accuracy requirements, especially for safety- critical applications.

Determining that a computation produces accurate results is challenging. Roundoff errors and

error propagation depend on the ranges of variables in complex and non-obvious ways; even

determining these ranges accurately for nonlinear programs poses a significant challenge. In

numerical loops, roundoff errors grow, in general, unboundedly. Finally, due to numerical

errors, the control flow in the finite-precision implementation may diverge from the ideal

real-valued one by taking a different branch and produce a result that is far-off of the expected

one.

In this thesis, we present techniques and tools for automated and sound analysis, verification

and synthesis of numerical programs. We focus on numerical errors due to roundoff from

floating-point and fixed-point arithmetic, external input uncertainties or truncation errors.

Our work uses interval or affine arithmetic together with Satisfiability Modulo Theories (SMT)

technology as well as analytical properties of the underlying mathematical problems. This

combination of techniques enables us to compute sound and yet accurate error bounds for

nonlinear computations, determine closed-form symbolic invariants for unbounded loops

and quantify the effects of discontinuities on numerical errors. We can furthermore certify the

results of self-correcting iterative algorithms.

Accuracy usually comes at the expense of resource efficiency: more precise data types need

more time, space and energy. We propose a programming model where the scientist writes

his or her numerical program in a real-valued specification language with explicit error an-

notations. It is then the task of our verifying compiler to select a suitable floating-point or

fixed-point data type which guarantees the needed accuracy. Sometimes accuracy can be

gained by simply re-arranging the non-associative finite-precision computation. We present a

scalable technique that searches for a more optimal evaluation order and show that the gains

can be substantial.

We have implemented all our techniques and evaluated them on a number of benchmarks

from scientific computing and embedded systems, with promising results.
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Key words: floating-point arithmetic, fixed-point arithmetic, roundoff errors, numerical

accuracy, static analysis, runtime verification, software synthesis
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Zusammenfassung
Numerische Software, wie sie im wissenschaftlichen Rechnen oder eingebetteten Systemen

verbreitet ist, nutzt zwangsläufig eine Approximation der reelen Zahlen in denen die meisten

Algorithmen entwickelt werden. In vielen Bereichen sind Rundungsfehler nicht die einzige

Quelle von Ungenauigkeiten und Mess- und Abschneidefehler erhöhen die Unsicherheit

der berechneten Ergebnisse zusätzlich. Es braucht angemessene Tools, um Benutzern die

Auswahl von geeigneten Approximationen (Datentypen und Algorithmen) zu erleichtern, die

ihren Präzisionsanforderungen gerecht werden. Dies ist vor allem bei sicherheitskritische

Anwendungen wichtig.

Ob die Ergebnisse einer Rechnung akkurat sind, ist allerdings schwierig festzustellen. Run-

dungsfehler und Fehlerfortpflanzung hängen auf komplexe Art und Weise von den Intervallen

der Variablen ab, und schon die genaue Bestimmung dieser Intervalle stellt bei nichtlinearen

Programmen eine erhebliche Herausforderung dar. In numerischen Schleifen wachsen Run-

dungsfehler im allgemeinen unbegrenzt. Hinzu kommt, dass durch numerische Fehler die

Implementation in endlicher Arithmetik von der idealen reelen abweichen kann, indem sie

einen anderen Weg durch die Kontrollstrukturen nimmt, und somit ein Ergebnis produziert,

das weit vom Erwarteten ist.

In dieser Arbeit präsentieren wir Methoden und Tools für die automatisierte und korrekte Ana-

lyse, Verifikation und Synthese von numerischen Programmen. Unser Schwerpunkt liegt dabei

auf numerischen Fehlern durch Rundungen von Gleitkomma- und Festkommaarithmetik,

Unsicherheiten an externen Inputs oder Abschneidefehler. Unsere Arbeit verwendet Intervall-

oder affine Arithmetik zusammen mit SMT Technologien (Satisfiability Modulo Theories)

sowie die analytischen Eigenschaften der zugrunde liegenden mathematischen Probleme.

Diese Kombination ermöglicht uns korrekte und dennoch präzise Fehlerschranken für nichtli-

neare Rechnungen und geschlossene symbolische Invarianten für unbegrenzte Schleifen zu

finden und die Auswirkungen von Kontrollstrukturen auf numerische Fehler quantitativ zu

bestimmen. Wir können darüber hinaus die Ergebnisse von selbst-korrigierenden iterativen

Algorithmen zertifizieren.

Genauigkeit ist in der Regel nur auf Kosten der Ressourceneffizienz möglich: genauere Da-

tentypen brauchen mehr Zeit, Platz und Energie. Wir stellen ein Programmiermodell vor, in

dem der oder die Wissenschaftler/in numerische Programme in einer reellwertigen Spezifi-

kationssprache mit expliziten Fehleranforderungen schreibt. Es ist dann die Aufgabe eines

Verifizierungs-Compilers einen geeigneten Gleitkomma- oder Festkommadatentyp zu wählen,

der die erforderliche Genauigkeit gewährleistet. Manchmal kann Präzision einfach durch eine
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andere Rechenreihenfolge gewonnen werden, da Computerarithmetik nicht assoziativ ist. Wir

stellen eine skalierbare Methode vor, die nach einer optimalen Reihenfolge sucht und zeigen,

dass die Präzisionsgewinne erheblich sein können.

Wir haben alle unsere Methoden implementiert und sie an einer Reihe von Beispielen aus den

Bereichen des wissenschaftlichen Rechnens und eingebetteter Systeme mit vielversprechen-

den Ergebnissen evaluiert.

Stichwörter: Gleitkommaarithmetik, Festkommaarithmetik, Rundungsfehler, numerische

Präzision, Statische Analyze, Laufzeitverifikation, Softwaresynthese
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Résumé
Des logiciels numériques, communs dans le calcul scientifique ou dans les systèmes embar-

qués, utilisent inévitablement une approximation de l’arithmétique réelle dans laquelle la

plupart des algorithmes ont été conçus. Dans de nombreux domaines, les erreurs d’arrondi

ne sont pas la seule source d’imprécision et les erreurs de mesure et les erreurs de troncature

augmentent encore l’incertitude des résultats calculés. Des outils adéquats sont nécessaires

pour aider les utilisateurs à sélectionner des approximations convenables (types de données

et algorithmes) qui répondent à leurs exigences en matière de précision, en particulier pour

les systèmes critiques.

Déterminer si le résultat d’un calcul est précis est difficile. Les erreurs d’arrondi et la propaga-

tion d’erreurs dépendent des intervalles de variables de façon complexe et non triviale ; rien

que la détermination précise de ces intervalles pour les programmes non linéaires représente

un défi considérable. Dans les boucles numériques les erreurs d’arrondi se développent, en

général, sans limite. Enfin, à cause des erreurs numériques, le flux de contrôle d’une implé-

mentation en précision finie peut s’écarter de l’implémentation réelle idéale en prenant une

branche différente et le résultat obtenu peut être très différent de celui attendu.

Dans cette thèse, nous présentons les techniques et les outils pour l’analyse, la vérification et

la synthèse de programmes numériques qui est sûre et automatisée. Nous mettons l’accent

sur les erreurs numériques dues aux arrondis de l’arithmétique en virgule flottante et de

l’arithmétique en virgule fixe, aux incertitudes externes d’entrée ou aux erreurs de troncature.

Notre travail utilise l’arithmétique d’intervalles ou affine avec la technologie SMT (Satisfiability

Modulo Theories) ainsi que des propriétés analytiques des problèmes mathématiques sous-

jacents. Cette combinaison de techniques nous permet de calculer des limites d’erreur sûres

et néanmoins précises pour les calculs non-linéaires. Cela nous permet aussi de déterminer

des invariantes symboliques et fermées pour les boucles infinies et de quantifier les effets de

discontinuités sur les erreurs numériques. Au-delà, nous pouvons certifier les résultats des

algorithmes itératifs autocorrectif.

La précision est généralement au détriment de l’efficacité des ressources : de plus précis types

de données ont besoin de plus de temps, d’espace et d’énergie. Nous proposons un modèle

de programmation, où la/le scientifique écrit le programme numérique dans un langage de

spécification en valeur réelle avec des annotations d’erreur explicites. C’est la tâche d’un

compilateur vérificateur de sélectionner le type de données approprié, soit en arithmétique

flottant ou en virgule fixe, qui garantie la précision nécessaire. De la précision peut, parfois,

être gagnée simplement en réorganisant l’arithmétique non-associative en précision finie.
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Nous présentons une technique évolutive qui cherche un ordre d’évaluation optimal et nous

montrons que les gains peuvent être substantiels.

Nous avons implémenté nos techniques et nous les avons évaluées avec un certain nombre

d’exemples de calculs scientifique ainsi que de systèmes embarqués, avec des résultats pro-

metteurs.

Mots clefs : arithmétique flottante, arithmétique en virgule fixe, erreurs d’arrondi, précision

numérique, analyse statique, vérification durant exécution, synthèse de logiciels
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1 Introduction

Numerical errors are rare, rare enough

not to care about them all the time,

but yet not rare enough to ignore them.

— William M. Kahan

Numerical programs are widely used in mathematics, science and engineering. For example,

scientific computing works with mathematical models which aim to explain the phenomena

of the physical world. Since they usually cannot be solved analytically, numerical algorithms

are needed to find approximate solutions. In computer science, many areas such as image and

signal processing, graphics, vision and machine learning also rely on numerical computations.

Finally, many of the devices we use on an every day basis are cyber-physical or embedded

systems: they have a numerical control system that interacts with the physical world. Many of

these applications are safety-critical, so it is very important to verify that they perform their

function correctly.

One of the many aspects that makes their verification difficult is the inherent gap between the

continuous nature of the mathematics and the physical processes and the discrete implemen-

tation on today’s digital computers. Many numerical algorithms are naturally expressed in

real arithmetic and often use algorithms which compute the exact answer only in the limit,

for instance with infinitely many components of a sequence or with an infinitely small step

size. Unfortunately, on a computer we only have finite resources available so that we need to

discretize and approximate both the arithmetic and the infinite iterations. Finite-precision

arithmetic can approximate real arithmetic, but needs to round the result of every computa-

tion step, committing a round-off error. When we stop an iteration after a finite number of

steps, we introduce another difference to the ideal computation, which we call truncation

error. Sensors or experimental equipment is not perfectly accurate either and contributes a

measurement error on the inputs which then ultimately also affects the overall uncertainty on

the result.
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Chapter 1. Introduction

Altogether we need to consider a variety of errors when assessing the correctness of numerical

results: measurement, roundoff and truncation errors. While the individual errors are usually

small, they accumulate and can render the final result inaccurate or entirely meaningless. An

N-version experiment [81] has shown that different implementations of an identical seismic

data processing algorithm can produce vastly different results. Much of the discrepancy has

been traced back to the numerical portion of the code. One important task of numerical

program verification is thus understanding how the individual errors combine and, ideally,

show that the overall error remains small enough.

Finite-Precision Roundoff Errors Because of the absence of real arithmetic, todays numer-

ical algorithms usually use finite-precision arithmetic, such as floating-point or fixed-point

arithmetic, for their computations. Base-two floating-point arithmetic has become popu-

lar also because it is nowadays implemented on dedicated hardware and the computations

are thus very fast. Fixed-point arithmetic can be implemented entirely with integers and is

mostly used when a dedicated floating-point unit is not available because of cost or energy

constraints, as is the case for many embedded systems. Both arithmetics work on a rational

subset of the reals with a limited number of digits for precision and with a limited range. For

example, 1/10 cannot be represented exactly in standard floating-point arithmetic because it

is not a power of two, so if we then compute 0.1∗9 in single (32 bit) precision we get 0.90000004

instead of 0.9. Furthermore, finite-precision arithmetic is not associative and multiplication

does not distribute so the usual mathematical equivalences do not hold any more. This implies

that the order of computation matters and, for example, summing up a list of numbers in two

different orders can produce two vastly different results if the results do not have the same

orders of magnitude.

Unfortunately, round-off (and other) errors are propagated through a computation in complex

and hard to predict ways. Even seemingly simple computations like calculating the area of a

triangle can have surprising results. Recall the standard textbook formula for a triangle with

sides a,b and c:

A =
√

s(s −a)(s −b)(s − c) where s = a +b + c

2

We have implemented this computation with double precision and with quadruple double

floating-point arithmetic [16], and then randomly sampled inputs for a,b and c . If we compare

the results, we obtain an estimate on the absolute round-off error of the double precision

computation, which we plot in Figure 1.1. We observe that for some triangles whose area is

small the errors grow. A careful examination of the computation reveals that the textbook

formula is numerically unstable for flat triangles [93]. That is, for triangles where the sum

of two sides is close to the length of the third (e.g. a +b ≈ c), the subsequent difference s −c

becomes very small and magnifies the existing round-off errors. This effect is also called

cancellation as many correct significant digits cancel out in the subtraction and leave mostly

digits affected by errors behind. Spotting cancellation can be very hard as it requires ranges of

all variables to be known.

2
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Figure 1.1 – Absolute errors committed for different triangle areas, determined by random
sampling and comparing results obtained with double precision against those obtained with
quadruple double precision. The inset shows a magnification of the triangle area range [1,2].

Furthermore, the errors in Figure 1.1 are clearly not evenly spread. As the inset shows for ranges

of triangle areas between 1 and 2, round-off errors appear to be rather randomly distributed. It

is clear then that we cannot in general verify the result of a numerical computation by a simple

manual inspection of either the source code or the result. Furthermore, approaches based

on sampling as are used in testing [18, 39, 37] require a large number of samples to provide

reasonable error estimates, but still cannot provide sound guarantees.

Accuracy vs Efficiency There is an inherent trade-off between accuracy and efficiency: the

more precise data type we choose, the longer the computation is going to run and the more

energy it is going to consume in general. One size does not fit all, however, and where a

program is placed on this spectrum highly depends on the particular requirements and

characteristics of the application. If the measurement noise is large and obscures any round-

off errors, or the application can tolerate a certain error (e.g. a human observer), then we may

not need the full 64 bit floating-point precision that is often the default choice [143]. In other

cases, an (embedded) device may not even have a floating-point unit and the computation

has to be implemented in fixed-point arithmetic, while being accurate enough to ensure

stability of your controller [108]. Other computations, however, may have very high precision

requirements, because of numerical instabilities or because a small difference can have a huge

effect on decision making [33]. Similar considerations also apply to the choice of algorithms

as well, where they influence the magnitudes of truncation errors for instance. Energy and

performance concerns have recently also sparked interest in approximate hardware, which

performs for example arithmetic operations less precisely [20]. However, in order to use

this trade-off without sacrificing correct behavior of the application we need to have some

confidence that our choice of data type (and algorithm) is appropriate. For this we have to be

able to quantify the overall errors and convince ourselves that they are sufficiently small.
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State of the Art Numerical error estimation is an integral part of numerical program verifi-

cation and has always been a concern in traditional numerical analysis [95]. The programmer

is being cautioned that round-off errors can corrupt the results, but very often it is hard to tell

when this is actually the case and no general guidelines exist. Verification is also an important

part of scientific computing, although it has a somewhat different meaning than in software

verification. Verification and validation (V&V) is mostly concerned with ensuring that numeri-

cal computations conform to the physical reality or agree with analytical solutions sufficiently,

if such exist [124]. Validated numerics are another example of verified computation, where in-

terval methods are used to compute guaranteed enclosures of the ideal real-valued result [137].

While all these approaches are being successfully used, they are also very specific and need to

be developed for each particular problem individually. In addition, interval arithmetic cannot

be used blindly as it looses correlation information and for useful results the computation

may need to be completely reformulated in a non-obvious way.

In software verification, tools that perform a sound analysis exist as well. For example, inter-

active theorem provers can prove very detailed and precise properties about floating-point

programs [13, 25, 103], but require an expert user. Hardware verification on the other hand,

due to its finite-state nature, has been very successful [80] and is now routinely used, but

software verification tools still have a long way to go before they can be called mature or even

merely practical for use by the average programmer [102]. Only Fluctuat [72] which is based

on abstract interpretation [42] is an automated tool for soundly estimating round-off errors.

The goal of this dissertation is to advance the state of the art of numerical error analysis,

verification and synthesis, by developing general, automated and accurate techniques and

tools which are applicable to a wide range of applications and can also be used by non-experts

in numerical analysis.

1.1 Challenges in Analysis and Verification

A central concern in numerical program verification is the determination of the ranges (or

intervals) individual variables can take. This is important, for example, if an algorithm is only

defined or valid on certain domains and we need to verify that all inputs, which may also be

results of previous computations, respect this domain. Range computation is however also

important for error estimation because the magnitude of round-off errors directly depends

on the magnitude of the results as the number of maximum digits is fixed. Many numerical

applications are nonlinear and feature correlations between its variables, characteristics that

make range computation a challenge. The standard method to estimate the range of an arith-

metic expression f (x) given the range for the input(s) x has been interval arithmetic [120].

Unfortunately it does not keep track of any correlations and thus can produce greatly inac-

curate results. Unlike in many domains, where linearization is a widely used and a suitable

technique, naively applied in the context of numerical estimation, it produces results that are

too approximate to be very useful.
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Figure 1.2 – Absolute actual round-off errors computed by comparison against quad double
precision arithmetic in 300 iterations of a simple gravity simulation. Note that the actual error
grows with the iteration number.

Conditional branches introduce discontinuities which can, in the presence of errors, result

in diverging behavior between the ideal real-valued computation and its finite-precision

implementation. We call the resulting difference discontinuity error. For example, suppose

that we want to approximate
p

(1+x) for small x:

if (x < 1e-4) 1 + 0.5 * x

else sqrt(1 + x)

If our application can tolerate a less accurate square root computation, the approximation is

preferable as it is significantly faster. If in the preceding computation x has accumulated an er-

ror, and the finite-precision value is for example 0.00099 instead of 0.00012, the finite-precision

computation will take the less accurate if branch, even though the ideal real computation

would have taken the else-branch. Since the computation of this conditional is not continuous,

the difference between the real and the finite-precision result due to round-offs is further

exacerbated by the conditional. Quantifying discontinuity errors is hard due to nonlinearity

and because the two branches of the conditional usually share variables and are thus tightly

correlated.

Loops are also a common feature in numerical programs. In forward computations such as

numerical integration of differential equations round-off errors grow in general unboundedly.

As an illustration, consider a simulation of the planet Jupiter orbiting the Sun, for which we

plot the absolute errors of one of the coordinates, x, in Figure 1.2. While the values of x stay

bounded, the errors grow, making it impossible to find a constant absolute error bound. For
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this reason current error computation techniques do not work well and often return an error

bound of [−∞,∞].

Numerical errors in loops in many iterative algorithms behave differently however. These

algorithms are often self-correcting in that the errors from one loop iteration are corrected

in later ones. This means then that tracking round-off errors across iterations, as current

approaches would do, is not very sensible. With each iteration, these algorithms gradually

converge to the exact result, but truly reach it only in the limit. As we need to stop the

algorithm after a finite number of iterations, the computed result is only approximate. We

want to quantify the truncation error that has been committed, but do so in a way that is

generally applicable to a large class of applications.

1.2 Synthesis

Too often, accuracy is an afterthought. For most applications today, the programmer picks a

numerical data type for his or her program first, implements the algorithm, as if it was in reals

and then (maybe) remembers to check that the results produced are close enough to what is

expected. Such an approach limits the range of possible implementations by an up front choice

of data type, but also limits applicable optimizations since finite-precision arithmetic does not

obey many mathematical rules. Furthermore, this approach creates a gap between the ideal

real-valued algorithm (on paper, in math) and the actual finite-precision implementation.

The programmer has to deal with implicit low-level details of the finite-precision arithmetic.

We argue that accuracy should ideally be made explicit and always be part of the program

itself. One easy and light-weight way, which we also use in this thesis, is to include assertions

which also check for numerical errors. Going further, we also propose a specification language

which allows to write programs over a Real data type with explicit accuracy requirements.

It is then up to a “verifying compiler” to select a suitable data type that satisfies the error

specification. Thus, the compiler synthesizes a finite-precision implementation from its

real-valued specification fully automatically.

Finite-precision arithmetic does not obey the usual arithmetic laws that real arithmetic does.

In particular it is not associative, so different computation orders can produce different results.

This is especially surprising if such a re-ordering is performed by a (traditional) compiler

silently behind the scenes, even though in reals such a transformation is mathematically

valid. We can however, exploit this ‘feature’ of finite- precision arithmetic to reduce round-off

errors “for free” by searching among the possible mathematically equivalent formulations of

our computation and generate the one which minimizes the overall round-off error. Such a

rewriting is semantically permissible when the input language is real-valued, for example like

our proposed specification language, and thus admits such transformations. Since we can do

this optimization over an entire range of inputs at compile time, we can improve the accuracy

of the computation without changing the data type.

6
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1.3 Outline and Contributions

This thesis presents techniques for sound numerical error analysis, verification and synthesis.

In particular, we have developed methods for accurately estimating errors in different kinds

of numerical programs. Furthermore, we explore both static and runtime approaches and

present different ways of integrating numerical verification into a programming language with

data type libraries, macros and compiler plugins. We have implemented and experimentally

evaluated all our techniques for their usability and effectiveness. This thesis is organized as

follows:

Chapter 2 provides necessary background on finite-precision and range arithmetic and then

describes our technique to compute and track round-off errors of floating-point and

fixed-point arithmetic. Denoting by f the ideal real- valued function and by f̃ the

corresponding finite-precision one, we develop a method to soundly bound the roundoff

error | f − f̃ | ≤ ρ. Our method is based on affine arithmetic [51] which we adapt for

tracking the errors of a single computation
(| f (a)− f̃ (a)| ≤ ρ)

as well as for a range [a,b]

of user-defined inputs
(∀x ∈ [a,b] . | f (x)− f̃ (x)| ≤ ρ)

. We can track round-off errors

for all arithmetic operations, as well as a number of commonly used transcendental

functions. The approach for tracking roundoff errors presented in this chapter forms

the basis of all our techniques and is used throughout this thesis.

Chapter 3 presents the AffineFloat and SmartFloat data types which by wrapping our round-

off error analysis replace the regular Double floating-point type and provide in addition

to the usual result also a sound upper bound on the error. In this dynamic approach, we

integrated our runtime library seamlessly into Scala, making it easily usable on existing

code. Our experiments show that the affine arithmetic based error computation in

general outperforms the traditional interval arithmetic based approach precision-wise,

often by orders of magnitude. We further demonstrate the ability of our data types to

identify problematic code such as the triangle area computation. Chapters 2 and 3 are

based on the paper [44].

Chapter 4 uses our round-off error computation together with a genetic algorithm to search

for fixed-point arithmetic implementations that minimize round-off errors. That is,

given a real-valued expression t , our tool automatically searches for t ′ which is math-

ematically equivalent and satisfies: minequiv. t ′ maxx∈[a,b]

∣∣∣t(x)− t̃ ′(x)
∣∣∣. By exploiting

the non-associativity of the arithmetic, our tool Xfp can find mathematically equivalent

expressions which are often up to 50% more precise than the baseline formulation, as it

may be generated by a tool like MATLAB [4]. This work is based on the paper [48].

Chapter 5 introduces our real-valued specification language for writing numerical programs,

which explicitly includes errors. We present a compilation algorithm that takes this

language over the Real data type and based on the given error requirements determines

a suitable floating-point or fixed-point data type for the concrete implementation.

7
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In order to handle interesting code including method calls, we introduce a range of

approximations, which we have implemented in our “verifying compiler” tool called

Rosa. This work has been presented in [47].

Chapter 6 presents our techniques for statically computing accurate range and error bounds

inside Rosa on straight-line arithmetic expressions. Combining interval and affine

arithmetic with nonlinear SMT solving allows us to use correlations between vari-

ables as well as additional constraints to determine range bounds accurately: ([a,b] =
getRange(P,expr) ⇒ ∀x,res.P (x)∧ res = f (x) → (a ≤ res∧ res ≤ b), where P captures

initial ranges and additional constraints). Then we separate numerical errors into

propagated initial errors and newly committed round-off errors and use this separa-

tion to derive a new method for error propagation (∀x, y ∈ [a,b] . |x − y | ≤ init.error →
| f (x)− f (y)| ≤ prop.error), which improves error bounds significantly over plain affine

arithmetic.

Chapter 7 presents two techniques for statically computing discontinuity errors due to con-

ditional branches which trade off accuracy for scalability in different ways

(∀x, y ∈ [a,b] . |x − y | ≤ init.error →| f1(x)− f̃2(y)| ≤ disc.error, where f1 and f2 represent

the two branches). Then, we apply our separation of errors idea and error propagation

technique to (unbounded) loops and derive an error specification which is a function of

the number of iterations. Beyond this inductive specification, we also show that this

approach allows us to compute error bounds for application which were out of reach

for state-of- the-art tools. That is, we compute a bound on | f m(x)− f̃ m(y)| valid for all

x, y ∈ [a,b] with |x − y | ≤ init.error. Chapter 6 and 7 are based on [47] as well as recent

work under submission [46].

Chapter 8 presents a certification procedure, implemented in the library called Cassia, for

dynamically verifying the accuracy of solutions of systems of nonlinear equations. These

applications are usually solved with self-correcting biterative methods which are highly

optimized. By integrating theorems from validated numerics with an assertion-based

approach we can leverage the efficiency of these methods, yet provide guarantees on

the results. We have presented this work in [45].

1.4 Usage Scenarios

This thesis presents four open-source implementations of our techniques. While they are,

for now, separate, we view them as building blocks which can be combined into one overall

system, handling different types of programs and applications.

For instance, our static analyzer Rosa can be used to soundly verify that numerical errors

in (smaller) computation kernels stay below a required bound. The verification effort may

fail, due to the limited scalability of the static approach, or because the asserted property is

simply not correct. In this case, the programmer can identify a trace of interest and debug or
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verify it with our SmartFloat runtime library. If the code is using an external library for solving

systems of equations, its untrusted result can be certified to be close enough to the true roots

by our Cassia runtime library. Finally, the programmer can use our tool Xfp to not only verify,

but also to improve a fixed-point implementation, by automatically rewriting the arithmetic

expressions such that roundoff errors are reduced.

Our tools are “push-button” in the sense that they only require the user to provide bounds

on the input ranges and, where applicable, measurement errors on inputs in addition to the

program itself. We believe that it is reasonable to expect that a domain expert can provide such

a specification. Each tool then performs the error estimation or search fully automatically.

We imagine our tools to be used, for example, by embedded systems engineers to soundly

verify that roundoff errors do not invalidate stability properties established for a real-valued

world. For the programmer of a scientific computing application, our tools can help him or

her to find numerical issues in the computation kernel, or determine which of several possible

alternative implementations is preferable from the perspective of numerical stability.

In this spirit, we have tested and evaluated all our tools on real-world benchmarks such as

embedded controllers, physical simulations and problems from biology as well as chemistry.

In addition, we have applied our tools in two case studies, where we helped astronomers and

researchers at EPFL gain confidence in their implementations. In subsection 3.2.6, we apply

our SmartFloat library to an computationally involved astronomical program and verify that

the result is accurate enough for the needed purpose. In subsection 8.5.2, we are able to certify

that solutions of an optimization problem from the energy domain are indeed correct up to

the required error threshold.
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2 Bounding Finite-Precision Roundoff
Errors

MATLAB’s creator Dr. Cleve Moler used to advise foreign visitors

not to miss the country’s two most awesome spectacles:

the Grand Canyon, and meetings of IEEE p754.

— William M. Kahan [145]

One of the main challenges in writing numerical programs is finite-precision arithmetic

(floating-point or fixed-point), because it inevitably introduces round-off errors. While the

round-off from one arithmetic operation may appear tiny, these errors can accumulate and

even render results entirely meaningless [81]. In the area of embedded systems, it has been

shown that the region of stability for embedded controllers directly depends on the round-off

errors [9]. It is thus important to understand how these errors accumulate and propagate

through a computation.

This chapter begins with necessary background on floating-point, fixed-point, interval and

affine arithmetic (AA) [51]. We then introduce our method for computing and tracking round-

off errors which forms an important building block for our techniques in the rest of this

thesis.

Our method for computing and tracking round-off errors is based on affine arithmetic. Stan-

dard affine arithmetic cannot be used as-is for a sound error computation, so we introduce

two adaptations: for tracking round-off errors for a single computations and for all com-

putations whose inputs are in given ranges. In addition to arithmetic operations, we also

implement AA for commonly used transcendental functions. It turns that this is non-trivial to

implement because of round-off errors in the internal computation. We describe our solution

which nonetheless provides sound and accurate bounds. We will use the error computation

presented here as a building block for

Our error computation tracks worst-case absolute errors of floating-point or fixed-point arith-

metic. That is, if x is the ideal real value we want to compute and x̃ is the actually computed

number in finite arithmetic, then our goal is to determine a sound upper bound on |x − x̃|.
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Chapter 2. Bounding Finite-Precision Roundoff Errors

Naturally, we want this bound to be as tight as possible. In order to achieve soundness, we

assume worst-case round-off errors at each operation, even though they will not be reached

in practice at every computation step. Our analysis tracks absolute and not relative errors

(|(x− x̃)/x|) as this is more natural, but relative errors can be computed from the absolute error

bound, if needed. When the range of x includes zero, computation of relative errors becomes

problematic, however, due to division by zero. This can happen e.g. when tracking a range

of positive and negative values even if the zero value is never obtained in practice. Choosing

absolute errors avoids this problem, so we report these.

The material in this chapter is mostly based on [44].

2.1 Finite-Precision Arithmetic

We begin with a review of floating-point and fixed-point arithmetic, which we denote by F.

2.1.1 IEEE Floating-Point Arithmetic

We assume throughout that floating-point arithmetic conforms to the IEEE 754 floating-point

standard [84]. Recent CPUs generally follow the standard fully, and most programming lan-

guages respect the minimal set of requirements that we rely on and which we present here. Our

tools and examples all run on the Java Virtual Machine (JVM), whose (partial) conformance to

the IEEE 754 standard is documented in [104]. The standard defines, among others, the single

and double precision floating-point data types (with 32 and 64 bits respectively), arithmetic

operations on these data types and various rounding modes.

The five rounding modes available in IEEE 754 are rounding to nearest (ties to even or ties

away from zero) and directed rounding (towards zero, +∞,−∞). We will assume that the code

we are interested in uses rounding to nearest, ties to even. This is the default rounding mode

in most programming languages, and also the only one available on the JVM. Our tools also

use the directed rounding modes towards +∞,−∞ internally, namely for interval arithmetic,

which we implement through a native library. In those cases, we will denote by x↓ and x↑ the

value of x when rounded towards −∞ and ∞ respectively.

The standard specifies that the basic arithmetic operations {+,−,∗,/,
p

} be computed as if first

an exact infinite-precision result was computed and then rounded to the specified precision.

For the rounding-to-nearest rounding mode this means that results are rounded correctly,

that is, the result from any such operation must be the closest representable floating-point

number. Provided there is no overflow and underflow, the result of an arithmetic operation in

floating-point arithmetic {⊕,ª,⊗,®, ◦p} then satisfies

x ¯ y = (x ◦ y)(1+δ), ◦ ∈ {+,−,∗,/}, ¯∈ {⊕,ª,⊗,®}

◦px = (
p

x)(1+δ), |δ| ≤ εM
(2.1)
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where εM is the so-called machine epsilon that determines the upper bound on the relative

error. For instance, for single precision εM = 2−24 and for double precision εM = 2−53. We will

use this abstraction throughout to compute round-off errors. These can also be measured

in terms of the unit in the last place (ulp), which is the value of the least significant bit of a

floating-point number. Arithmetic operations are then rounded to within a 1
2 ulp.

Underflow occurs when a computed value is too small to be represented by a regular floating-

point number (called normalized) and is handled by one of two cases. The first option is

flushing, i.e. by discarding all significant digits. The roundoff error is then bounded by the

smallest positive normalized number. The second, more standard, option is gradual underflow,

where denormalized numbers are used to fill the gap between the smallest normalized number

and zero. The roundoff error is bounded by half the ulp of the smallest positive normalized

number in this case. In this thesis, we consider a range containing only denormals to be an

error and will thus be working only with Equation 2.1. Note that for systems with gradual

overflow this bound on the round-off error soundly over-estimates also the round-off for any

denormal results contained in a larger range. For more (detailed) information on floating-

points see [71].

The techniques described in this thesis can be ported to other languages, such as C/C++, or

to languages specifically targeted for instance for GPU’s or parallel architectures as long as

the computation order is not changed by the compiler and provided the implementation

of floating-point arithmetic adheres to the IEEE 754 rounding-to-nearest semantics (Equa-

tion 2.1), and uses denormal floating-point numbers for underflow.

While our examples use single- and double-precision floating-point numbers, our techniques

are parametric in the machine epsilon. This implies that we can analyze code in any floating-

point implementation, as long as it can be abstracted by Equation 2.1. Changing the number

of exponent and mantissa bits may be useful for specific applications with programmable

hardware platforms or with dynamic (software) allocation of exponent and mantissa bits.

2.1.2 Higher-Precision Floating-Point Arithmetic

One possible way to avoid or reduce round-off errors is to use higher-precision or arbitrary

precision arithmetic. These are usually provided through software libraries, for instance, the

QuadDouble library uses two or four double floating-point numbers to obtain 32 and 64

decimal digit precisions [82]. The GNU MPFR Library [62] implements multiple-precision

floating-point computations, and many other similar libraries exist. For certain applications,

for instance geometric computations, such a high precision is indeed crucial. For example,

the library LEDA keeps track of the computation history in order to determine geometric

predicates [116]. For all other applications, however, we want to benefit from the performance

the hardware support of single and double-precision IEEE floating-point provides.
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[77] proposes a new data type with a variable number of mantissa and exponent bits in order

to make arithmetic more memory efficient. Using this new data type, however, requires to

specify up front a limit on the maximum number of these bits and it is not clear how to

estimate it soundly ahead of time, so it remains to be seen how applicable it will be to real-

world problems.

2.1.3 Fixed-Point Arithmetic

An alternative for representing a subset of the rational numbers on a computer is fixed-point

arithmetic. It presumes integer arithmetic hardware support only and is thus a common choice

on embedded devices where a floating-point unit is not a good option due to resource bounds.

This naturally entails a trade-off, as we cannot rely anymore on the dynamic properties of

floating-point arithmetic. Instead, as the name suggests, the exponent range is fixed for every

intermediate variable (but not necessarily the same) and we have to implement shifts aligning

them for arithmetic operations explicitly.

We assume a constant bit length for an entire computation, for example 16 or 32 bits. Every

intermediate value in an arithmetic computation is assigned a fixed-point format which

determines how many integer bits are required to cover the range of the value, and how many

fractional bits f remain for the fractional digits. An integer value x can then be interpreted as

the rational number 2− f x. We assume signed integer arithmetic and truncation semantics,

which implies that the maximum absolute round-off error for a value is given by 2− f .

An implementation of a real-valued expression into fixed-point arithmetic consists of first

determining the ranges of all values in the program, including inputs, constants and inter-

mediate results. This determines the minimum number of integer bits. Then, arithmetic

operations are implemented with regular integer arithmetic and bit shifts to align the implicit

decimal points [9].

Fixed-point formats are not unique and can result in different overall round-off errors. For a

given arithmetic expression, this error is minimal when the round-off error at each operation

is minimal. This is achieved when the formats are chosen such that the number of integer

bits is sufficient but not larger than necessary, i.e. we maximize the number of fractional bits.

Thus, to obtain an optimal fixed-point implementation, we need to evaluate the ranges of

(intermediate) values as tightly as possible. Note that the round-off errors depend on the

ranges of values, which is similar to the round-off error abstraction we use for floating-point

arithmetic.

2.2 Interval Arithmetic as a Baseline

The standard approach to guaranteed computation is interval arithmetic (IA) [120], and we

will use it as the baseline for our techniques and experiments. IA associates with each variable
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x a closed interval [a,b] such that x ∈ [a,b] ⇔ a ≤ x ∧ x ≤ b where x, a,b can be elements of

R,Q,Z or F. When the lower and upper bounds are equal, we call the interval a point interval.

We will also use the notation [x] to denote the interval represented by the variable x.

Given a real-valued function f (x1, . . . , xn) and ranges for its inputs [ai ,bi ] such that xi ∈ [ai ,bi ],

then interval arithmetic computes an over-approximation [c,d ] of the range of f over the

input domain, i.e.

∀xi . xi ∈ [ai ,bi ] → f (x1, . . . , xn) ∈ [c,d ]

If X and Y are two intervals, then binary arithmetic operations are defined (over R) as

X ◦Y = {z | ∃x ∈ X , y ∈ Y . z = x ◦ y}

and similarly for other functions such as square root. We can implement interval arithmetic

straight-forwardly with rationals or integers, however when using floating-point arithmetic

directed rounding is needed to obtain sound interval bounds.

Interval arithmetic can be used to obtain sound bounds on finite-precision round-off errors

by interpreting the width of the interval as the error on the corresponding variable. Input

intervals are point intervals, if the number can be represented exacly in finite precision, or

have the lower and upper bound be the next smaller and bigger representable finite-precision

number respectively. After performing the computation in standard interval arithmetic, we

can read off the bound on the round-off error from the width of the result’s interval.

Unfortunately intervals give too pessimistic estimates in many cases. The problem is easy to

demonstrate: if X is an interval [0, a] then interval arithmetic approximates the expression

X −X with [−a, a], although it is, in fact, always equal to zero. Essentially, interval arithmetic

ignores correlations between variables, i.e. it approximates x −x in the same way as it would

approximate x − y when x and y are unrelated variables that both belong to [0, a].

Furthermore, we would like to not only track a single computation (with initially point inter-

vals), but a range of inputs, and obtain roundoff error bounds which are sound for all possible

executions on those inputs. In other words, we want the intervals to track two sources of

uncertainty:

• roundoff errors due to the difference between the ideal and the finite-precision value

• uncertainty on the inputs (which will in general be larger in magnitude)

Any approach that conflates these two sources of uncertainty will quickly become inaccurate

in distinguishing the (smaller) roundoff errors. That said, intervals can be very useful in certain

carefully chosen cases, and we also use them in later chapters.
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2.3 Affine Arithmetic

Affine arithmetic (AA) addresses the difficulty of interval arithmetic in handling correlations

between variables. Affine arithmetic was originally introduced in [51] and developed to com-

pute ranges of functions over the domain of reals, with the actual calculations implemented

in double floating-point precision. A possible application of affine arithmetic, as originally

proposed, is finding roots of a function in a given initial interval by a branch-and-bound

approach.

Affine arithmetic represents possible values of variables as affine forms

x̂ = x◦+
n∑

i=1
xi εi , εi ∈ [−1,1]

Using the terminology from [51], x◦ denotes the central value (the mid point of the represented

interval) and each noise term xi εi represents a deviation from the central value with maximum

magnitude xi . We will call the εi ’s noise symbols. Note that the sign of xi does not matter in

isolation, it does, however, reflect the relative dependence between values. For example, take

x = x◦+x1ε1, then in real number semantics,

x −x = x◦+x1ε1 − (x◦+x1ε1) = x◦−x◦+x1ε1 −x1ε1 = 0

In contrast, if we do not have a correlation (no shared noise symbols), the resulting interval

has width 2∗x1 and not zero: x −x ′ = (x◦+x1ε1)− (x◦+x1ε2) = x1ε1 −x1ε2 6= 0.

The range represented by an affine form, denoted by [x̂], is computed as

[x̂] = [x◦− radius(x̂), x◦+ radius(x̂)], where radius(x̂) =
n∑

i=1
|xi |

A general affine operation αx̂ +βŷ +ζ consists of addition, subtraction, addition of a constant

(ζ) or multiplication by a constant (α,β). Expanding the affine forms x̂ andŷ we get

αx̂ +βŷ +ζ= (αx◦+βy◦+ζ)+
n∑

i=1
(αxi +βyi )εi (2.2)

Implementation in Finite Precision When implementing affine forms in floating-point

arithmetic, we need to take into account that some operations are not performed exactly

because the central value and the coefficients need to be represented in some finite (e.g. dou-

ble) precision. As suggested in [51], the round-off errors committed during the computation,

here called internal errors ι, can be added with a new fresh noise symbol to the final affine

form. Each operation carries a round-off error and all of them must be taken into account

when computing a rigorous bound for ι. The challenge hereby consists of accounting for
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all round-off errors, but still creating a tight approximation. While for the basic arithmetic

operations the round-off can be computed with Equation 2.1, there is no such simple formula

for calculating the round-off for composed expressions (e.g. α∗ x◦+ζ). We determine the

maximum round-off error of an expression f (v1, . . . , vm) using the following procedure [51]:

z = f (v1, v2, . . . , vm)

z−∞ = f (v1, v2, . . . , vm)↓
z+∞ = f (v1, v2, . . . , vm)↑

ι= max(z+∞− z, z − z−∞)

where ↓ , ↑ denotes rounding towards −∞ and ∞ respectively. That is, the program computes

three values: (1) the floating-point result z using rounding to-nearest, (2) the result z−∞
assuming worst-case round-off errors when rounding towards −∞, and the analogous result

z+∞ with rounding towards +∞ at each step. We determine the worst-case committed round-

off error ι as the maximum difference between these values.

An alternative is to use a rational data type backed by arbitrary precision integers (e.g. Java’s

BigInteger) to avoid having to deal with round-off errors from the internal computation. The

improved readability and maintainability of the implementation comes at the expense of

efficiency, as the integers in the numerator and denominator grow quickly. Chapter 3 and

chapter 8 present an application of affine arithmetic in a runtime technique, and use the

floating-point implementation. The remaining work which is of static nature and considers

shorter arithmetic expressions at a time employs the rational version. In the rest of this chapter

we will discuss the floating-point implementation, the rational one follows straight-forwardly.

2.3.1 Nonlinear Computations

Affine operations are computed by Equation 2.2. For nonlinear operations like multiplica-

tion, inverse or square root, this formula is not applicable and the operations have to be

approximated. Multiplication is derived from expanding and multiplying two affine forms:

x̂ ŷ = x◦y◦+
n∑

i=1
(x◦yi + y◦xi )εi + (η+ ι)εn+1

where ι collects the internal errors when applicable and η is an over- approximation of

the nonlinear contribution. To compute the latter, several possibilities exist of varying

degree of accuracy. The simplest way is to compute η as η = radius(x̂) · radius(ŷ). When

radius(x̂),radius(ŷ) ¿ 1, this is sufficiently accurate as the nonlinear contribution η will then

also be small. For larger ranges, the over-approximation of the nonlinear part becomes
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significant. Our implementation computes η as:

η= max
εi∈[−1,1]

∣∣∣∣∣ ∑
1≤i , j ,≤n

xi y j εi ε j

∣∣∣∣∣
= ∑

1≤i , j ,≤n
|xi y j |

=
n∑

i=1
|xi yi |+

n∑
i< j

|xi y j +x j yi |

Division x̂/ŷ is computed as x̂ · (1/ŷ). For the approximation of unary functions, the problem

is the following: given f (x), find α,ζ,δ such that

[ f (x)] ⊂ [αx +ζ±δ]

where [ f (x)] denotes the sound bound (interval) of the range of f , given a range for its input x.

α and ζ are constants determined by a linear approximation of the function f and δ represents

all (round-off and approximation) errors committed, thus yielding a rigorous bound. [51]

suggests two approximations for computing α,ζ, and δ: a Chebyshev (min-max) or a min-

range approximation. Figure 2.1 illustrates these two on an example function. For both

approximations, the algorithm first computes the interval represented by [x̂] = [a,b] and

then works with its endpoints a and b. In both cases we want to compute a bounding box

around the result, by computing the slope (α) of the dashed line, its intersection with the

y-axis (ζ) and the maximum deviation from this middle line (δ). In the following we assume

that the function is monotone over the interval of approximation [a,b] and does not cross any

inflection or extreme points. Where this is not the case, our library resorts to computing the

result in interval arithmetic and converting it back into an affine form.

Min-range Compute the slope α of the function f (which we want to approximate) at one

of the endpoints a or b. Compute two lines with slope α that go through the points

(a, f (a)) and (b, f (b)) respectively. Fix ζ to be the average of the y-intercepts of the two

lines. Compute δ as the maximum difference between f and the line with slope α and

going through ζ, which occurs at either a or b, because the sign of the derivative of f

does not change over [a,b] by assumption.

Chebyshev Compute the slope α of the line through both f (a) and f (b). This gives one

bounding side of the wanted ‘box’ (parallelepiped). To find the opposite side, compute

the point where the curve takes on the same slope again. Again, compute ζ as the

average of the intersections of the two lines and δ as the maximum deviation at either

the middle point v , a or b.

In general, the Chebyshev approximation computes smaller parallelepipeds, especially if the

slope is significantly different at a and b. However, it also needs the additional computation

of the middle point. Especially for transcendental functions like arccos,arcsin, etc., this
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Figure 2.1 – Linear approximations of the inverse function

can involve quite complex computations which are all committing internal round-off errors.

On large input intervals, like the ones considered in [51, 52], these are (probably) not very

significant. However, when keeping track of round-off errors, our library deals with intervals

on the order of machine epsilon. In particular, the computation of v introduces roundoff

errors, but because it lies between [a,b] it is not clear whether it should be rounded up or down

for soundness. In fact, when we used rounding to nearest, which is closest to the true point,

Chebyshev approximations kept returning unexpected and wrong results. We thus concluded

that min-range is the better choice. As discussed in [52], the Chebyshev approximation would

be the more accurate choice in long running computations, however we simply found it to

be too numerically unstable for our purpose. To our knowledge, this problem has not been

acknowledged before.

Error estimation for nonlinear library functions like log,exp,cos, etc. requires specialized

rounding, because the returned results are correct to 1 ulp only for the standard Java/Scala

math library [88], and hence are less accurate than arithmetic operations, which are correct to

within 1/2 ulp. The directed rounding procedure is thus adapted in this case to produce larger

error bounds to make it is possible to analyze code with the usual Scala mathematical library

functions without modifications.

Soft Policy to Avoid Too Many False Warnings

Our solution follows the ‘soft’ policy advocated in [51], whereby slight domain breaches for

functions that work only on restricted domains are attributed to the inaccuracy of our over-

approximations and are ignored. For example, with a ‘hard’ policy computing the square

root of [−1,4] results in a run-time error, as the square root function is not defined on all of

the input interval. It is possible, however, that the true interval (in a real semantics) is [0,4]

and the domain problem is just a result of a previous over-approximation. In order to not
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interrupt computations unnecessarily with false alarms, a ‘soft’ policy computation will give

the result [0,2]. Note, that our library nonetheless generates warnings in these cases, so the

policy only affects the tool’s ability to continue a computation in ambiguous cases, but not its

rigorousness. The techniques in chapter 6 take a different approach, and report such breaches

as (potential) errors.

2.4 Tracking Roundoff Errors with Affine Arithmetic

Affine arithmetic as described in section 2.3 can be used to compute sound range bounds. We

can also use it to track round-off errors by computing the maximum absolute round-off at

each arithmetic operation and adding it to the affine form with a fresh noise symbol. Note

the difference between the internal errors, which are due to computation of the range, and

these added round-off errors, which stem from modeling the finite-precision computation. In

fact, there exist different ways of using affine arithmetic for tracking round-off errors and we

identify and implement two of them.

2.4.1 Different Interpretations of Computations

When using a range-based method like interval or affine arithmetic, it is possible to have

different interpretations of what such a range represents. We consider the following three

different interpretations of affine arithmetic. The first one is also the interpretation from [51].

Interpretation 2.1 (Original Affine Arithmetic) In the original affine arithmetic, an affine

form x̂ represents a range of real values, that is [x̂] denotes an interval [a,b] for a,b ∈R. Note

that this interpretation does not consider roundoff errors.

Interpretation 2.2 (Exact Affine Arithmetic) In exact affine arithmetic x̂ represents one finite-

precision value and its deviation from an ideal real value due to roundoff. That is, if a real-

valued computation computed x ∈R as the result, then for the corresponding computation in

finite precision it holds that x ∈ [x̂].

We realize interpretation 2.1 by requiring that the central value x◦ is equal to the actually

computed finite-precision value at all times, in order to guarantee sound computation of

round-off errors. This interpretation is the basis for our AffineFloat data type, which we

present in chapter 3.

Interpretation 2.3 (Global Affine Arithmetic) In global affine arithmetic x̂ represents a range

of finite-precision values, that is [x̂] denotes an interval [a,b] for a,b ∈ F.

Interpretation 2.3 is used in our SmartFloat data type. Note the difference between this

interpretation and interpretation 2.1: we are computing a sound bound of the result of a finite-
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precision computation, with committed round-off errors, whereas in the standard formulation

we are computing a sound range of a real-valued computation without committed roundoff

errors (but may be computing it with e.g. floating-points).

Usually implementation issues are of minor interest, however in the case of finite precision

computations they are an important aspect: our implementation itself uses floating-point

arithmetic to compute round-off errors, and we are faced with the very same problems in our

own implementation that we are trying to quantify. We have identified two main challenges

when implementing an affine arithmetic-based round-off error analysis:

• Implementing interpretation 2.2 with standard affine arithmetic as presented in sec-

tion 2.3 is unsound.

• The resulting accuracy is unsatisfactory if affine arithmetic is implemented directly as

defined previously.

In the following, we will discuss how to adapt affine arithmetic for our two interpretations,

and our solution to the accuracy challenge.

2.4.2 Tracking the Computation from a Single Input Value

A possible use of affine arithmetic for keeping track of round-off errors is to represent each

finite precision number by an affine form. The central value denotes the actually computed

finite precision value and the noise terms collect the accumulated round-off errors. That is,

the central value x◦ is exactly the finite-precision value and the noise symbols xi represent

the deviation due to round-off errors and approximation inaccuracies from non-affine opera-

tions. One expects to obtain tighter bounds than with interval arithmetic, especially when a

computation exhibits many correlations between variables. However, a straightforward appli-

cation of affine arithmetic in the original formulation is not always sound with respect to this

interpretation. Namely, standard affine arithmetic takes the liberty of choosing a convenient

central value in a range and does not necessarily preserve the correspondence with Double.

In particular, non-affine operations such as division or trigonometric functions can shift the

central value away from the actually computed finite-precision value. This correspondence

is important, however, as the round-off for floating-points is computed according to Equa-

tion 2.1, i.e. by multiplication of the new central value by the machine epsilon εM . If the

central value does not equal the actual floating-point value, the computed round-off will be

that of a different result. For fixed-point arithmetic, this dependence is also present, although

a difference is only visible when the two values happen to have different fixed-point formats.

Affine operations maintain the invariant that the computed finite-precision value is equal to

the central value. However, non-affine operations defined by computing α,ζ and δ such that

the new affine form is ẑ =α · x̂ +ζ+δεn+1 do not necessarily enforce this. That is, in general

(and in most cases), the new z◦ will be slightly shifted (z◦ 6=α · x◦+ζ). Usually, this shift is not

large, however soundness cannot be guaranteed any more.
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Figure 2.2 – Modified min-range approximation

Our implementation therefore provides a modified version of affine arithmetic that ensures

the correspondence between the central value and the computed finite-precision value and

thus ensures soundness.

Guaranteeing Soundness of Error Estimates

Our solution is illustrated in Figure 2.2. For non-linear operations, the new central value is

computed as z◦ = α · x◦+ζ and we want f (x◦) = α · x◦+ζ, where f (x◦) is the value actually

computed in finite precision. Hence, our library computes ζ as

ζnew = f (x◦)−α · x◦

instead of as the average y-intercept as before. δ is then correspondingly computed with

respect to this ζnew . The min-range approximation computes for an input range [a,b] an

enclosing parallelepiped of a function as α · x + ζnew ±δ that is guaranteed to contain the

image of the nonlinear function from this interval as computed in finite precision.

Suppose that ζnew = f (x◦)−α · x◦, with α computed at one of the endpoints of the interval.

Because we compute the deviation δ with outwards rounding at both endpoints and keep the

maximum, we soundly over-approximate the function f in finite-precision semantics. Clearly,

this approach only works for input ranges where the function in question is monotonic and

does not have extreme or inflection points. We implement this procedure for floating-point

arithmetic as part of a runtime library (see chapter 3), where we use that by the Java API [88]

the implemented floating-point library functions are guaranteed to be semi-monotonic, i.e.

whenever the real function is non-decreasing, so is the floating-point one. This technique

applies also for fixed-point arithmetic division. It is clear from Figure 2.2 that our modified

approximation computes a bigger parallelepiped than the original min-range approximation.

However, in this case, the intervals are very small to begin with, so the over-approximations

do not have a big effect on the accuracy of our library.
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2.4. Tracking Roundoff Errors with Affine Arithmetic

def /(other: AffineForm): AffineForm = other match {
case AffineForm(y0, ynoise) =>
val (yloD, yhiD) = other.interval
val (yloDD, yhiDD) = other.intervalDD

if(yloD <= 0.0 && yhiD >= 0.0) return FullForm //division by zero

if(ynoise.size == 0.0) { //exact
val inv = 1.0/y0

if((1.0 /↓ y0) == (1.0 /↑ y0))
// multiplication with hint: x0/y0
return this * (AffineForm(inv, Queue.empty), x0/y0)

else
return this * (AffineForm(inv, Queue(roundOff(inv))) , x0/y0)

}

/* Calculate the inverse. */
val (a, b) = (min(|ylo|, |yhi|), max(|ylo|, |yhi|))
val (ad, bd) = (min(|yloD|, |yhiD|), max(|yloD|, |yhiD|))

// slope at right endpoint
val alpha = -1.0 /DD ( b ∗DD b )

// deviation of approximation from true value at end points of interval

val dmax = DD(1.0 /↑ ad) −↑
DD (alpha ∗↓

DD a))

val dmin = DD(1.0 /↓ bd) −↓
DD (alpha ∗↑

DD b))

// use hint to compute zeta
var (zeta, rdoff) = computeZeta(1.0/y0, alpha, y0)
if(yloD < 0.0) zeta = -zeta

// total deviation

val delta = max( zeta −↑ dmin, dmax −↑ zeta ) +↑
DD rdoff

// iota includes all internal roundoffs from the mult. by alpha
val inverse = AffineForm(1.0/y0, alpha * ynoise + iota)

/* Multiply x * 1/y */
return this * (inverse, x0/y0)

case EmptyForm => EmptyForm
case FullForm => FullForm

}

Figure 2.3 – Division operation for tracking one operation
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Chapter 2. Bounding Finite-Precision Roundoff Errors

Figure 2.3 shows the pseudocode for the division operation which is representative of our

nonlinear approximation computation. We further support the following mathematical func-

tions for floating-point arithmetic: sqrt, log, exp, cos, sin, tan, arccos, arcsin, arctan. The code

shows the floating-point implementation of affine arithmetic for the case of tracking a double

precision floating-point computation. The methods are implemented inside the AffineForm

class
class AffineForm(x0: Double, xnoise: Queue)

where x0 is the central value and xnoise is the list of noise terms. We call these y0 and ynoise

respectively for the second operand in the binary division operation. EmptyForm is the result of

an invalid operation and is thus the affine arithmetic equivalent of N aN . FullForm represents

the interval [−∞,∞]. The subscript DD denotes arithmetic in double-double precision, which

we discuss further later. We also use directed rounding denoted by ↓ and ↑ for rounding

towards −∞ and ∞ respectively. Division is computed as x ∗ 1
y . Our algorithm calls a special

multiplication method that takes a “hint” to ensure that the central value equals the double

value that would be computed. This is necessary as x∗ 1
y is not necessarily equal to x

y in floating-

point arithmetic (although the difference is in general very small). computeZeta computes ζ

such that z◦ =α ·x◦+ζ holds, and also returns the internal round-off error committed from

this computation.

2.4.3 Tracking Ranges of Inputs

The instantiation of affine arithmetic just described provides a way to estimate round-off

errors for one single computation. It provides reasonably tight bounds for the most com-

mon mathematical operations and is fast enough to be applied in applications such as LU

decompositions and Fast Fourier transforms (see subsection 3.2.1). It can be used to provide

some intuition about the behavior of a calculation and is a better alternative for interval

arithmetic which is a common choice in validated computation. It does not provide, however,

any guarantee as to how large the errors would be if one chose (even slightly) different input

values or constants.

Unfortunately, a straightforward reinterpretation of neither the original affine arithmetic,

nor the modified version for AffineFloat provide sound error estimates when tracking a

finite-precision computation for a range of inputs. When tracking a range of finite-precision

numbers and computing the worst-case round-off errors of each computation, we need to

consider the round-off errors for all values in the range, not only for the central value as

was the case for AffineFloat. In addition, the non-linear approximation algorithm does not

explicitly compute the round-off errors, they are implicitly included in the computed δ. If we

now have input values given by (possibly wide) ranges, the computed δ will be so large that no

round-off estimate from them is meaningful.

Our solution is the following. We represent every value by the following pair:

(x◦+
∑

xi εi +
∑

xi ui ,
∑

riρi ) (2.3)
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2.4. Tracking Roundoff Errors with Affine Arithmetic

The first element of the tuple is an affine form representing a range of finite-precision values

and the second element tracks the maximum committed round-off errors for all values in that

range.

x◦ ∈ F is the central value as before, but we use two different noise terms to capture the range:

xi εi and xi ui . We mark noise that comes from user-defined errors by special noise symbols ui ,

which we call uncertainties. For instance, when the user specifies an input value as 3.14±0.5,

x◦ = 3.14 and the single noise term is 0.5u1 such that the represented range is [2.65,3.65]. εi ’s

capture computation artifacts, for example from nonlinear approximations. Long running

computations accumulate many noise terms, which we “compact” for performance reasons

by essentially combining several noise terms into one. Since during this process we loose

correlations, keeping the user defined uncertainties separate allows us to distinguish and

preferably preserve these. The details of this procedure are given in subsection 2.4.4. riρi is

a zero-centered affine form whose error terms keep track of the round-off errors committed.

The sum
∑ |ri | gives a sound estimate on the current maximum committed round-off error for

all values within the range represented by the first part of the triple.

For the affine form represented by the first two elements of the tuple, the calculations are

performed as described in section 2.3, except that the round-off errors are computed as

discussed below. In addition, we need to define how to propagate the already computed

round-off errors. For the original and our exact affine arithmetic this propagation has been

automatically taken care of, but for tracking a range of values soundly we need to modify this

procedure.

Computation of Roundoffs

To compute the maximum round-off error of an operation which is sound for a range of values,

our library first determines the new range [a,b]. It uses either Equation 2.2 for affine operations

or the min-range approximation for nonlinear ones. For floating-point arithmetic, we use

the fact that arithmetic operations +,−,∗,/,p are rounded correctly, that is, the round-off is

computed as

1

2
ulp(max(|a|, |b|))

where ulp is a function provided by the java.lang.Math package. For other operations, correct

to within 1 ulp, the round-off error is simply ulp(max(|a|, |b|)). This round-off error compu-

tation can also easily be adapted to other rounding modes, but we only consider rounding

to nearest in this thesis as it is the the commonly used default rounding mode and the only

one available on the JVM. For fixed-point arithmetic, the range [a,b] and the given bit length

determine the best fixed-point format. The round-off error is then the quantization error of

this format.
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Chapter 2. Bounding Finite-Precision Roundoff Errors

Propagation of Roundoffs

Already committed and accumulated errors
∑n

i=1 riρi have to be propagated correctly for each

operation. We denote the error terms of an affine form x̂ by ρ̂x and similarly for the other

noise terms.

Affine The propagation is given straightforwardly by Equation 2.2. That is, if the operation

involves the computation αx̂ +βŷ +ζ, the errors are transformed as αρ̂x +βρ̂y + (ι+
κ)ρn+1, where ι corresponds to the internal errors committed and κ to the new round-off

error. That this is indeed correct can be seen from the fact that the computation would

have been identical, if those error terms would have been noise terms of the x̂ and ŷ .

Multiplication From multiplying out (we leave out û’s for simplicity)

x̂ ∗ ŷ = (x◦+ êx + ρ̂x )∗ (y◦+ êy + ρ̂y )

= x◦∗ y◦+ (x◦êy + y◦êx + êx êy )+ (x◦ρ̂y + y◦ρ̂x + êx ρ̂y + êy ρ̂x + ρ̂x ρ̂y )

The last term is the contribution to the new error. The linear part (x◦ρ̂y + y◦ρ̂x ) is

computed as before for the propagation of ranges by multiplication by x0 and y0. The

nonlinear part (êx ρ̂y + êy ρ̂x + ρ̂x ρ̂y ) poses the difficulty that it involves cross terms

between the noise and error terms. We compute the new ηe as follows:

ηe = radius(x̂) · radius(ρ̂y )+ radius(ŷ) · radius(ρ̂x )+ radius(ρ̂x ) · radius(ρ̂y )

Note that this produces an over-approximation, because some of the errors from the

error terms are also included in the noise terms.

Other Non-affine Because the nonlinear function approximations compute α,ζ and δ, the

propagation of errors reduces to the affine propagation with one modification. The

factor used to propagate the round-off errors must be instead of α the maximum slope

of the function over the given input range to ensure soundness. Because this value does

not necessarily equal α, we compute this factor separately.

Additional Errors

Additional domain-specific errors can also be added to an affine form to be tracked for the

rest of the computation. One source of these errors are measurement inaccuracies in systems

that interact with the physical world through sensors. Another source are truncation errors,

i.e. the differences between a (hypothetical) analytical solution and a result computed with

an iterative method. Given x̂ = (x◦+∑
xi εi +∑

xi ui ,
∑

riρi ) and the error to be added ŷ =
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2.4. Tracking Roundoff Errors with Affine Arithmetic

(y◦+∑
yi εi +∑

yi ui ,
∑

siρi ), the resulting affine form is given by

ẑ = (x◦,
∑

xi εi +
∑

xi ui + (|y◦|+ radius(
∑

yi εi +
∑

yi ui ))εn+1,∑
riρi ,+(radius(

∑
siρi )ρm+1)

That is, the maximum magnitude of the error is added as a new noise term, and the maximum

magnitude of the round-off committed when computing this error is added as a new error

term.

2.4.4 Achieving Accuracy

It turns out that even when choosing the min-range approximation with input ranges with

small widths (order 10−10 and smaller), computing the result of a nonlinear function in

interval arithmetic gives better (more accurate) results. The computation of α and ζ in our

approximation cannot be changed for soundness reasons, but it is possible to optimize the

computation of δ. Some of our applications use a rational data type in the implementation for

this reason, but for a runtime application performance becomes an issue due to long integers.

In order to avoid arbitrary precision libraries also for performance reasons, our library uses

double-double precision (denoted as DD) as a suitable compromise for tracking round-off

errors for a computation performed in double floating-point precision. For other precisions,

the internal precision needs to be adjusted accordingly. Each value is represented by two

standard double precision values. Algorithms have been developed and implemented [131, 49]

that allow the computation of standard arithmetic operations with only ordinary floating-

points, making the performance trade-off acceptable. We found that using extended precision

reduces the internal round-off errors sufficiently for most nonlinear function approximations.

To ensure soundness we also apply directed rounding to double-double computations.

Precise Handling of Constants A single value a is represented in a real-valued interval

semantics as the point interval [a, a] or in affine arithmetic as x̂ = a without noise terms. This

no longer holds for finite-precision values that cannot be represented exactly in the underlying

finite representation. Our library tests each value for whether it can be represented or not in

a given precision and adds noise terms only when necessary. Adding round-off errors only

when constants cannot be represented exactly limits the over-approximations committed and

provides a more accurate analysis.

Managing Noise Symbols in Long Computations The runtime performance of our library

depends on the number of noise terms in each affine form, because each operation is at least

linear in the number of noise terms. Hence, an appropriate “compacting” strategy for noise

symbols becomes crucial for performance in longer calculations. Compacting too little means

that our approach becomes too slow, whereas compacting too much means the loss of too

much correlation information.
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The goal of compaction is to take as input a list of noise terms and output a new list with

fewer terms, while preserving the soundness of the round-off error approximation and, ideally,

keeping the most important correlation information. Our library performs compaction by

adding up the absolute values of the smaller terms and introducing them as a fresh noise

symbol along with the (unchanged) remaining terms. We propose the following strategy to

compute the new noise terms, which is used when the number of noise terms exceeds a certain

user-defined threshold and attempts to reduce the number below it. In our implementation,

all the parameters can be adjusted for a specific application.

i) Compact all error terms smaller than a given threshold which identifies (likely) internal

errors. For instance, for the analysis of double floating-point precision computations, we

set this threshold as 10−33.

ii) Compute the average (avrg) and the standard deviation (stdDev) of the remaining noise

terms. Compact all terms smaller than avrg ·a + stdDev ·b and keep the rest. The factors

a and b are user- controllable positive parameters, and can be chosen separately for each

computation. (The result is sound regardless of the particular values.)

iii) In some cases the above steps are still not enough to ensure that the number of symbols is

below the threshold. This occurs, for example, if nearly all errors have the same magnitude.

If our library detects this case, it repeats the above procedure one more time on the

newly computed noise terms. In our examples, at most two iterations were sufficient. In

pathological cases in which this does not suffice, the library compacts all noise symbols

into a single one.

2.4.5 Correctness

One condition for the presented round-off error analysis to be sound is that the operations are

made in exactly the order as given in source code and without optimizations or fused-multiply

instructions. We have enforced this for our code by using the strictfp modifier for the

calculations. We are able to avoid several pitfalls related to floating-point numbers [23, 118]

by writing our library in Scala and not for example in C, as the JVM is not as permissive to

optimizations that may alter the actual execution of code.

The correctness of each step of the interval or affine arithmetic computation implies the cor-

rectness of our overall approach: for each operation in interval or affine arithmetic the library

computes a rigorous over-approximation, and thus the overall result is an over-approximation.

This means, that for all computations, the resulting interval is guaranteed to contain the result

that would have been computed in an ideal real semantic.

The use of assertions in our implementation certifying that certain invariants always hold

support the correctness of our implementation. Example invariants for the case when we track

only one computation include the statement that the computed double precision value has to
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be exactly the same as the central value of the affine form, a prerequisite for our round-off

analysis.

In addition, we have tested our library extensively on several benchmarks (see section 3.2) and

our implementation of nonlinear functions against the results from 30 digit precision results

from Mathematica.

2.5 Comparison with Fluctuat

We are aware of one tool, Fluctuat [72], which is able to quantify soundly and automatically

roundoff errors. It is an abstract interpretation based static analysis tool whose core analysis,

although developed independently, relies on affine arithmetic in a very similar way to our

design. The techniques described in this chapter for tracking a single computation are dynamic

in nature since we are essentially running a computation with some additional information

computed on the side. In contrast, the technique for computing worst-case error bounds for

a whole range of inputs we view as static and it is this technique that we compare against

Fluctuat. The SmartFloat data type implementing this technique (see chapter 3) is a kind of

hybrid, in the sense that we execute the control flow dynamically, but bound the roundoff

errors in a static way. Our techniques in later chapters (6 and 7) generalize this into a proper

static analyzer.

As our technique, Fluctuat separates the range from the error estimation and keeps track of

both with affine arithmetic, but also keeps a floating- point interval on the side. We did not

find computing an additional interval side-by-side to provide more accuracy in general, so we

keep only the two affine forms for efficiency reasons. Our design differs from Fluctuat’s in a

number of details and we review them briefly here.

Fluctuat uses an arbitrary precision library for internal computations. We use either double-

double floating-point precision for our runtime libraries, or a rational data type for the imple-

mentation in static approaches. Our experiments in chapter 3 confirm that this precision is

sufficient for a runtime approach and we believe that it is preferable over arbitrary precision

from an efficiency standpoint. For the use in a static analysis tool (chapters 5-7), we chose a

rational data type for accuracy and compatibility reasons, as we interface with an SMT solver

which internally also uses rationals. Efficiency of the numerical data type did not appear as a

bottleneck in our experiments (compared with the time taken by the SMT solver).

Our techniques are targeted towards scientific computing applications so that we support

many transcendental functions. Fluctuat has been developed with industrial embedded code

in mind and thus supports only standard arithmetic with square root. Where our nonlinear

operations use the min-range approximation, Fluctuat approximates division and square

root with a first-order Taylor approximation. Furthermore, we keep all higher-order terms

by default and compact as needed, whereas Fluctuat collects all higher-order contributions

in a single noise term. We have not performed a systematic and direct comparison of the

29



Chapter 2. Bounding Finite-Precision Roundoff Errors

individual features but this would certainly be an interesting project in the future. In our

experiments, presented in chapter 3, we have not found big differences in that sometimes our

implementation provides better results and sometimes it was Fluctuat’s. Overall, we believe

that more fundamental differences and extensions, such as those we present in chapter 6 have

a bigger impact.

Conclusion

We have presented an adaptation of affine arithmetic for the estimation of round-off errors.

In fact, we discuss two such adaptations, one for the case of tracking a single value through

a computation, including it’s round-off errors, which can serve as a replacement for the

traditionally used interval arithmetic. The second adaptation shows how to use two affine

forms to track the ranges for a computation where the inputs are interval-valued and their

corresponding worst-case round-off errors. We further describe how to implement nonlinear

operations, including transcendental functions, with floating-point arithmetic such that

it computes sound and correct results. We are not aware of other work that can do this

computation for very small ranges (order of machine epsilon) and with a performance that is

acceptable for runtime applications.
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Previously, we have described our roundoff error computation which is applicable to both

floating-point and fixed-point arithmetic. This chapter (based on the paper [44]) presents

an application of affine arithmetic to track round-off errors in double precision floating-

point computations at runtime. We chose floating-points as the target, since Doubles have

established themselves as the default data type for implementing software that approximates

real-valued computations. Since the definition of the IEEE 754 standard [84], these computa-

tions have also become reliable and, to a certain extent, portable [118].

The general idea is to replace the floating-point data types with a smarter version which auto-

matically keeps track of the accumulating errors. Our smarter data types come in two flavors:

AffineFloat tracks a single computation and corresponds to the affine arithmetic interpreta-

tion of subsection 2.4.2, and SmartFloat which tracks a range of values and their worst-case

round-off errors, corresponding to the interpretation in subsection 2.4.3. AffineFloats can

often provide tighter error estimates than SmartFloats, at the expense of lack of generality. Our

data types improve over a computation performed in interval arithmetic in terms of accuracy

and generality.

We implemented our data types as a runtime library in Scala [125] for tracking round-off errors

for double floating-point arithmetic. A seamless integration allows users to apply our library

with very few changes to existing floating-point code. A runtime library is especially useful

in the case of floating-point numbers, because the knowledge of exact values enables us to

provide a tight analysis. Also, with our tight integration it is possible to use any Scala construct,

thus not restricting the user to some subset that an analyzer front-end can handle. The library

presented is specialized for double floating-point precision, as this is the common default

choice in scientific computing, but the underlying techniques are general and can be applied

to other floating-point or fixed-precisions equally well. Our code is open-source and available

from github.com/malyzajko/ceres.

We evaluate our implementation on a number of benchmarks from scientific computing,

and compare our results against those computed by interval arithmetic and the tool called
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Fluctuat [72]. Fluctuat is an abstract interpretation bases static analyzer and is the only other

tool we are aware of for soundly estimating round-off errors. However, while our code has

been always open-source, Fluctuat’s binary became available only recently, hence we compare

our results against the newest version of Fluctuat.

3.1 Integration into Scala

Our library provides the wrapper types AffineFloat and SmartFloat that are meant to replace

the Double type in the part of a program that the user wishes to check. For instance, the code

in Figure 3.1 shows a short function computing the area of a triangle with sides a, b and c using

SmartFloats. All that is needed to put our library into action are two import statements and the

replacement of Double types by one of our AffineFloat or SmartFloat types. Any remaining

conflicts are signaled by the compiler’s strong type checker. The computed errors can be

accessed in different ways, with the methods absError, interval and toString. absError

simply returns the maximum absolute error, interval returns an interval of the variable

which is sound with respect to all uncertainties and roundoffs, and finally toString provides a

pretty-printed representation of the computed value and its associated error.

Our new data types handle definitions of variables and the standard arithmetic operations, as

well as many scala.math library functions, including the most useful ones:

• log, expr, pow, cos, sin, tan acos, asin, atan

• abs,max,min

• constants Pi (π) and E (e)

The library also supports special values N aN and ±∞ with the same behavior as IEEE floating-

point arithmetic. To accomplish such an integration, we needed to address the following

aspects.

import ceres.smartfloat.SmartFloat
import SmartFloat._

...

def triangleTextbook(a: SmartFloat, b: SmartFloat, c: SmartFloat): SmartFloat = {
val s = (a + b + c)/2.0
sqrt( s*(s-a)*(s-b)*(s-c))

}

Figure 3.1 – Computing the area of a triangle with SmartFloats
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Operator overloading Developers should be able to use the usual operators +, -, *,/ with-

out having to rewrite them as functions, e.g as x.add(y). Scala supports operator overloading

in the sense that +, -, *, / are regular method calls, and x.m(y) can equivalently be written

as x m y [125], resulting in the familiar syntax for arithmetic.

Symmetric equals Comparisons between our data types and regular numeric Scala types

should be symmetric, that is, the following should hold

val x: SmartFloat = 1.0

val y: Double = 1.0

assert(x == y && y == x)

In Scala, == delegates to the equals method, if one of the operands is not a primitive type.

However, this is not enough to ensure a symmetric comparison, as Double, or any other built-in

numeric type, cannot compare itself correctly to a SmartFloat. For this case, Scala provides

the trait ScalaNumber which has a special semantics in comparisons with ==. If y is of type

ScalaNumber, then both x == y and y == x delegate to y.equals(x) and thus the comparison

can be correctly and symmetrically handled inside our data type classes.

Mixed arithmetic Developers should be able to freely combine our data types with Scala’s

built-in primitive types, as in the following example

val x: SmartFloat = 1.0

val y = 1.0 + x

if (5.0 < x) {...}

This is made possible with Scala’s implicit conversions, strong type inference and companion

objects [125]. In addition to the class SmartFloat, the library defines the (singleton) object

SmartFloat, which contains an implicit conversion such as

implicit def double2SmartFloat(d : Double): SmartFloat = new SmartFloat(d)

As soon as the Scala compiler encounters an expression that does not type check, but a suitable

conversion is present in scope, the compiler inserts an automatic conversion from the Double

type in this case to a SmartFloat. Implicit conversions allow a SmartFloat to show a very

similar behavior to the one exhibited by primitive types and their automatic conversions. The

code for AffineFloat is analogous.

Library functions Having written code that utilizes the standard mathematical library func-

tions, developers should be able to reuse their code without modification. Our library imple-

ments these functions in the companion AffineFloat or SmartFloat objects. It is thus possible

to write code such as

val x: SmartFloat = 0.5

val y = sin(x) * Pi
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Concise code For ease of use and general acceptance it is desirable to be able to skip the new

keyword in definitions and to simply write SmartFloat(1.0). This is made possible in Scala

where the special SmartFloat.apply(...) method (also placed in the companion object) is

syntactic sugar for SmartFloat(...).

3.1.1 Conditionals

Path consistency is ensured by the compare method of the AffineFloat and SmartFloat data

types which takes uncertainties into account. The user can choose between two different

behaviors: if a comparison x < y cannot be decided for sure due to uncertainties on the

arguments, either a warning is printed or an exception is thrown. In the case where the user

chooses to throw an exception, we provide two methods for handling such a failure gracefully

but yet explicitly:

def certainly(b : ⇒ Boolean) : Boolean = {

try b catch ComparisonUndeterminedException ⇒ false

}

def possibly(b : ⇒ Boolean) : Boolean = {

try b catch ComparisonUndeterminedException ⇒ true

}

If we cannot be sure a boolean expression involving SmartFloats is true, we assume it is false

in the case of certainly, and that it is true in the case of possibly. Hence, the following

identity holds:

if (certainly(P)) T else E ⇔ if (possibly(!P)) E else T

We show a possible application in subsection 3.2.3.

3.2 Experimental Results

We have selected several benchmarks for evaluating our library. Many of them were originally

written in Java or C and we ported them to Scala as faithfully as possible. Once written in

Scala, we found that changing the code to use our AffineFloat or SmartFloat types instead of

Double is a straightforward process and needs only few manual edits. Scala compiler’s type

checker was particularly helpful in this process.

3.2.1 Accuracy of AffineFloat

We evaluate the accuracy of our AffineFloat data type against a round-off error estimation

implementation based on interval arithmetic as described in section 2.2. For this purpose, our

library also provides the IntervalFloat data type, with the same signatures as AffineFloat,

but with an back-end implementation using intervals implemented with floating-point arith-

metic and directed rounding. Our chosen benchmarks for this evaluation are the following:
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Nbody simulation is a benchmark from [6] simulating the orbits of the planets Jupiter, Saturn,

Uranus and Neptune around the Sun using a simple symplectic-integrator. Since the

benchmark includes many variables that we could potentially measure, we choose

the total energy of the system as our measured value. The energy changes both due

to truncation errors in the integration method and due to round-off errors. Here, we

measure the latter.

Spectral norm is a benchmark from [6] that calculates the spectral norm of the infinite matrix

with entries a11 = 1, a12 = 1
2 , a21 = 1

3 , a13 = 1
4 , a22 = 1

5 , a31 = 1
6 , etc. The benchmark uses

the power method, which is an iterative method, and we choose to study the error on

the single output of this function for different numbers of iterations.

Jacobi Successive Over-relaxation (SOR) is taken from the SciMark 2.0 benchmark set [130]

and is an iterative numerical method for solving a linear system of equations. We report

errors for different numbers of iterations. The input is a random matrix of size 100x100.

LU decomposition is also taken from SciMark, and performs a LU decomposition of matrix

A with or without pivoting, which can then be used to solve a system of linear equations

Ax = b. Pivoting attempts to select larger elements in the matrix during factorization to

avoid numerical instability. We compare the errors on the solution x.

FFT performs a one-dimensional Fast Fourier Transform. This benchmark is also part of

SciMark. We perform the forward and backward transform and report the maximum

absolute error on the recovered vector.

For the last three benchmarks, where the input data is vector or matrix-valued, we report the

maximum error over all entries. We use matrices with random entries with maximum value

10.0 as inputs. We ran the code with different initial seeds and can confirm that the results we

present here are consistent across runs.

Table 3.1 shows a comparison between the absolute errors computed by the IntervalFloat,

AffineFloat and SmartFloat data types (we compare performance in subsection 3.2.4). These

results provide an idea on the order of magnitude of round-off error estimates, as well as the

scalability of our approach. Note that none of these benchmarks is known to be particularly

unstable for floating-point errors, so we cannot observe some especially bad behavior. We

can see that our AffineFloats and SmartFloats give consistently better, that is, more accurate

bounds on the absolute round-off errors. The numbers for the SOR and LU benchmark also

suggest that our library generally scales better in terms of accuracy on longer computations

than interval arithmetic. The type of computation has a strong influence on how fast the over-

approximation of error bounds grows; linear computations can naturally be handled better

with affine arithmetic than nonlinear ones. Furthermore, the numbers show that in most cases,

when considering a single computation, AffineFloat computes tighter bounds by leveraging

its different and more accurate semantics. On three benchmarks SmartFloat actually performs
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benchmark details IntervalFloat AffineFloat SmartFloat

Nbody 1s, dt=0.01 4.20e-14 1.94e-14 1.95e-14

1s, dt=0.015625 2.83e-14 1.28e-14 1.29e-14

5s, dt=0.01 3.12e-12 7.55e-13 7.57e-13

5s, dt=0.015625 2.06e-12 4.89e-13 4.98e-13

Spectral norm 2 iter. 1.69e-14 1.33e-15 1.73e-15

5 iter. 6.24e-14 3.33e-15 1.07e-14

10 iter. 1.43e-13 9.77e-15 1.12e-14

15 iter. 2.24e-13 1.38e-14 1.27e-13

20 iter. 3.03e-13 3.75e-14 1.82e-14

SOR 5 iter. 6.17e-13 1.30e-13 1.88e-13

10 iter. 4.01e-11 2.77e-12 3.80e-12

15 iter. 2.70e-9 5.68e-11 7.84e-11

20 iter. 1.84e-7 1.19e-9 1.39e-9

LU with pivoting dim 5 3.89e-14 6.40e-15 2.17e-14

dim 10 2.14e-11 2.34e-12 NaN

dim 15 4.07e-9 1.53e-10 NaN

dim 5 6.53e-9 6.01e-11 NaN

dim 10 1.51e-8 1.44e-10 NaN

LU w/o pivoting dim 15 4.36e-1 8.24e-5 NaN

FFT dim 256 4.11e-11 9.66e-12 7.21e-12

dim 512 1.33e-10 3.77e-11 2.44e-11

Table 3.1 – Comparison of absolute errors computed by IntervalFloat, AffineFloat and
SmartFloat with compacting threshold 42 (which seemed like a good compromise between
accuracy and performance).

better, which is likely due to the slightly larger over-approximation AffineFloat may have to

make for nonlinear computations.

3.2.2 Accuracy of SmartFloat

We evaluate the accuracy and usefulness of our SmartFloat data type on a number of selected

benchmarks.

• The triangle example from Figure 3.1 is known to be exhibit cancellation, which happens

when two quantities close in value are subtracted and thus many of the correct digits

get subtracted away in the process. This happens in particular for flat triangles, where
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we observe a loss of accuracy. Figure 3.2 shows an improved version due to [93]. The

code first sorts the sides of the triangle by their lengths and refactors the final formula

such that computations are performed in an order that minimizes accuracy loss.

• Another famous example is the formula for computing the roots of a quadratic equation.

The formulation usually taught in schools produces less accurate results (orders of mag-

nitude), when one root is much smaller. Figure 3.3 shows both the classical formulation

as well as an improved version from [71].

• The following equation computes the frequency change due to the Doppler effect:

z = d v

du
= −(331.4+0.6T )v

(331.4+0.6T +u)2

This benchmark is challenging because it is nonlinear, includes a division, and contains

a strong correlation between the nominator and denominator.

• B-spline basic functions are commonly used in image processing [91]

B0(u) = (1−u)3/6

B1(u) = (3u3 −6u2 +4)/6

B2(u) = (−3u3 +3u2 +3u +1)/6

B3(u) = u3/6

With u ∈ [0,1], this benchmark also features strong correlations.

Table 3.2 compares the round-off errors computed by our tool against those computed by

Fluctuat [72]. At the time when we developed our library (2011), Fluctuat was not available for

comparison, so the numbers we report here were obtained later with the spring 2014 version

of Fluctuat, which may include later improvements. We note that overall the differences are, in

general, rather small, but it would be interesting to determine which design choices together

are optimal in the future. Both tools are clearly able to determine that Kahan’s triangle area and

the smarter quadratic root computation produce more accurate results than their textbook

versions.
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def triangleKahan(a: SmartFloat, b: SmartFloat, c: SmartFloat): SmartFloat = {
if(b < a) {
val t = a
if (c < b) { a = c; c = t }
else
if (c < a) { a = b; b = c; c = t }
else { a = b; b = t }

} else if (c < b) {
val t = c; c = b;
if (c < a) { b = a; a = t }
else { b = t }

}
sqrt((a+(b+c)) * (c-(a-b)) * (c+(a-b)) * (a+(b-c))) / 4.0

}

Figure 3.2 – Computing the area of a triangle with SmartFloats and Kahan’s improved version
of the formula.

val a: SmartFloat = ...
val b: SmartFloat = ...
val c: SmartFloat = ...

val discr = b*b - a * c * 4.0

//classical way
var r1 = (-b - sqrt(discr))/(a * 2.0)
var r2 = (-b + sqrt(discr))/(a * 2.0)

//smarter way
val (rk1: SmartFloat, rk2: SmartFloat) =
if(b*b - a*c > 10.0) {
if(b > 0.0)
( (-b - sqrt(discr))/(a * 2.0), c * 2.0 /(-b - sqrt(discr)) )

else if(b < 0.0)
( c * 2.0 /(-b + sqrt(discr)), (-b + sqrt(discr))/(a * 2.0) )

else
( (-b - sqrt(discr))/(a * 2.0), (-b + sqrt(discr))/(a * 2.0) )

}
else
( (-b - sqrt(discr))/(a * 2.0), (-b + sqrt(discr))/(a * 2.0) )

Figure 3.3 – Quadratic formula in two versions
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benchmark inputs SmartFloat Fluctuat

triangle textbook a = 9, b = c = [4.71, 4.89] 5.46272459e-14 5.49398942e-14

a = 9, b = c =[4.61, 4.79] 7.09227167e-14 7.19504679e-14

a = 9, b = c =[4.501, 4.581] 1.16065397e-12 8.38212416e-13

triangle Kahan a = 9, b = c =[4.71, 4.89] 1.62947801e-14 1.36572207e-14

a = 9, b = c =[4.61, 4.79] 1.93681987e-14 1.52819080e-14

a = 9, b = c =[4.501, 4.581] 1.94849999e-13 1.29513866e-13

quadratic classic

r1

a = [2.499, 3.499],
b = [55.5001, 56.5001],
c = [0.50074, 1.50074]

1.17647194e-14 1.02354065e-14

r2 1.57388750e-15 1.60866674e-15

quadratic smarter

rk1 1.17647194e-14 1.02354065e-14

rk2 4.24657821e-17 1.11700058e-17

doppler u = [-100, 100],
v = [20, 20 000],
T = [-30, 50]

3.69565423e-12 3.90280004e-13

bsplines

b0

u = [0, 1]

1.57281595e-16 1.61907525e-16

b1 8.93960831e-16 9.25185854e-16

b2 8.37293198e-16 8.32667269e-16

b3 9.13621031e-17 1.06396374e-16

Table 3.2 – Comparison of absolute errors computed by SmartFloat and Fluctuat

3.2.3 Spring Simulation

So far, we have only measured round-off errors, however, errors can come from other sources

as well. For instance, during the integration of an ordinary differential equation, the numerical

algorithm accumulates truncation errors, i.e. errors due to the discretization of the integration

algorithm. Unlike roundoff errors, truncation errors highly depend on the particular integra-

tion method used so that no simple unique formula for quantifying these errors exists. One

example that illustrates these errors is the simulation of an (undamped and unforced) spring

in Figure 3.4. For simplicity, we use Euler’s method. Although this method is known to be

too inaccurate for many applications, it provides a good application showcase for our library.

Note the method addError in line 15. In this example, we compute a coarse approximation of

the method error by computing the maximum error over the whole execution. What happens
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def springSimulation(h: SmartFloat) = {
2 val k: SmartFloat = 1.0

val m: SmartFloat = 1.0
4 val xmax: SmartFloat = 5.0

var x: SmartFloat = xmax //curr. horiz. position
6 var vx: SmartFloat = 0.0 //curr. velocity

var t: SmartFloat = 0.0 //curr. ’time’
8

var truncError = k*m*xmax * (h*h)/2.0
10

// while(certainly(t < 1.0)) {
12 while(t < 1.0) {

val x_next = x + h * vx
14 val vx_next = vx - h * k/m * x

x = x_next.addError(truncError)
16 vx = vx_next

t = t + h
18 }

}

Figure 3.4 – Simulation of a spring with Euler’s method

behind the scenes is that our library adds an additional error to the affine form representing

x, i.e. it adds a new noise term in addition to the errors already computed. At the end of the

simulation, we obtain the following results. The numbers in parentheses are the maximum

absolute round-off errors committed. We have rounded the output outwards for readability

reasons.

step size t x

h = 0.1 [1.099,1.101] (8.55e-16) [2.174, 2.651] (7.4158e-15)

h = 0.125 [1.0,1.0] (0.00e+0) [2.618, 3.177] (4.04e-15)

h = 0.01 [0.999, 1.001] (5.57e-14) [2.699, 2.706] (6.52e-13)

When running this simulation with step sizes 0.1 and 0.01, time t cannot be computed ac-

curately, whereas using h = 0.125, which is representable in binary, the result is exact. Our

library detects this, and will print the warning comparison failed! when evaluating the while

condition in the last iteration. This warning is (correctly) not printed for step size h = 0.125.

Now consider x. We can see that choosing smaller step sizes, the enclosure of the result

becomes smaller and thus more accurate, as expected. But note also, that the use of a smaller

step size also increases the overall round-off errors. This is also to be expected, because we

have to execute more computations.

Note that this accurate analysis of round-off errors is only possible with the separation of

round-off errors from other uncertainties. Our SmartFloat type can thus be used in a more

40



3.2. Experimental Results

benchmark double IntervalFloat AffineFloat SmartFloat

Nbody 1000 steps 0.2 28.5 1446.1 7079.8

Spectral norm, 20 iter. 1.5 35.4 168.4 410.0

SOR 20 iter. 1.1 52.5 4404.7 9396.1

LU w/ pivoting, size 15 2.7 3.2 12.4 40.0

FFT size 512 4.5 7.2 247.3 1088.5

Table 3.3 – Comparison of running times of our different data types and plain double precision.
Compacting threshold was set as 42.

general framework that guarantees soundness with respect to a floating-point implementation

but that also includes other sources of errors.

An alternative to printing the comparison failed! warning is to let the SmartFloat throw an

exception when the comparison on line 12 cannot be decided with certainty. We can catch

this exception for example with our certainly construct, as in line 11. In this case, the code

will perform one iteration less. Had we chosen possibly, the comparison would be more

permissive and the number of iterations would have been the same as when running this

application with plain Doubles.

3.2.4 Performance

Our technique aims to provide much more information than ordinary floating point execution

while using the same concrete execution. We therefore do not expect the performance to

be comparable to that of an individual double precision computation on dedicated floating-

point hardware. Nonetheless, our technique is effective for unit testing and for exploring

smaller program fragments one at a time. AffineFloat and SmartFloat use the floating-point

implementation of affine arithmetic as we found that the program fragments we consider in

our benchmarks are already long enough to slow down a rational implementation unaccept-

ably. The runtimes of AffineFloat and SmartFloat are summarized in Table 3.3. SmartFloats

essentially use two affine forms, which accounts for the larger runtimes. We believe that

given that the computations are long running, the runtimes remain acceptable. Similarly,

total memory consumption in these benchmarks was not measurably large. We used the

Scalameter framework [132] for benchmarking.

3.2.5 Compacting

We have also run experiments to determine the effect the maximal number of noise terms has

both on the runtime and on the accuracy. Figure 3.5 shows the effect of different noise symbol

count thresholds on the runtime and accuracy. The normalized running times of AffineFloat

on our benchmarks show a more or less linear dependence and the table with error bounds
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benchmark 20 40 60 80 100

Nbody 1000 6.27e-11 4.72e-11 3.64e-11 3.30e-11 3.32e-11

Spectral 20 3.66e-14 6.46e-14 2.66e-14 6.02e-14 2.33e-14

SOR 20 3.19e-8 1.96e-9 4.25e-10 1.65e-10 8.92e-11

LU 15 4.77e-10 2.63e-10 1.36e-10 5.35e-11 4.22e-11

FFT 512 6.79e-11 4.41e-11 3.41e-11 2.37e-11 1.80e-11

Figure 3.5 – Effect of the maximum number of noise symbols on the running time (graph) and
error bounds (table).

gives an idea about the loss of correlation and accuracy compacting can cause. Based on this

trade-off, the user of our library can set a different threshold for different applications and

even dynamically.

3.2.6 Position of the Moon Case Study

Our final example in this chapter is an astronomical program that computes the moon’s posi-

tion as a function of the date. We obtained two implementations of the algorithm presented

in [115] from the Geneva observatory, one in Java and one in Python. They observed that

two otherwise identical implementations sometimes returned different results, and were

thus worried about the accuracy. The implemented algorithm is about 120 lines of code, and

performs 946 linear operations, 1390 multiplications, 74 divisions or square roots and calls

209 trigonometric functions. The algorithm returns two coordinates α and δ, for example
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for the input date 2012-2-10: (173.69903942141244, -2.607438794791873) in Python, and

(173.69903942141244, -2.607438794791856) in Java, note the difference in the last two digits.

This difference becomes even more visible, when these “raw” coordinates are converted into

equatorial coordinates.

We used our AffineFloat data type on this code and our results are summarized in the follow-

ing table.

α δ

Python 173.69903942141244 -2.607438794791873

AffineFloat 173.69903942141244 -2.607438794791856

± 6.2172e-9 ± 2.5341e-9

Python 11h 34m 47.76946113898774 -2d 36m 26.77966125074235

AffineFloat 11h 34m 47.76946113898774 -2h 36m 26.779661250681812

± 1.4921e-6 ± 9.1226e-6

The top part of the table shows the raw coordinates computed, and the bottom part the

converted equatorial coordinates. Our AffineFloat running on the JVM returns the same

result as plain Java code, so we only list one. The raw coordinate data only differs in the last two

digits for the δ value, but this error grows when converted to coordinates. This is also reflected

in the growth of the error reported by our AffineFloat (from order e-9 to order e-6). Finally,

with our data type and analysis, we are able to certify that the digits in bold are definitely

correct (which is sufficient for the particular application that used this code).

Conclusion

We have presented a runtime instantiation of our round-off error computation and demon-

strated its usability and utility on a number of examples. We have extensively analyzed our

implementation in terms of accuracy of results, scalability and performance and shown that

even a ‘straightforward’ affine arithmetic implementation can provide decent results. In

particular, we have thoroughly compared the affine arithmetic performance against inter-

val arithmetic and can confirm that the theoretical advantages do indeed translate to the

implementation, at least for mostly linear computations.
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4 Synthesizing Accurate Fixed-Point
Expressions

Many algorithms in control and signal processing are implemented on embedded devices

which do not have a hardware floating-point unit due to their higher energy consumption

and cost. Software emulation is slow and may thus not be an option either. Hence, these algo-

rithms are often implemented in fixed-point arithmetic. Much research exists into bit width

allocation [101, 110, 94], that is, the determination of the number of integer and fractional

bits. The order of computation has been largely disregarded and often left as generated for

example from MATLAB [113] or as written by hand. However, even with an optimal bit width

allocation, the final round-off can depend on the exact order of computation due to the lack

of associativity of fixed-point arithmetic. As we will show, this difference can be quite large.

One of the desired properties of control systems is asymptotic stability, i.e. the property that

the state of the controlled plant will asymptotically converge to a given point. It has been

shown [9] that when implementation errors are present, this convergence can only be shown

for a set around the point, called the region of practical stability, whose size depends on the

magnitude of the round-off errors. It is thus of practical importance to reduce errors as much

as possible. One way to reduce errors is to increase the bit length available for fixed-point

arithmetic. This approach, however, can be costly, especially when a gradual increase is not

possible and a whole word needs to be added (e.g. increase 16 bits to 32 bits). An approach

that can avoid this cost, such as ours, is thus preferable.

In this chapter we present our technique and tool called Xfp for synthesizing accurate fixed-

point expressions from their real-valued specification. Our technique is based on a heuristic

search with genetic programming [129] and uses our affine arithmetic based error compu-

tation as the fitness function. Since we are searching among mathematically equivalent

expressions, we have adapted genetic programming to this setting by defining our own muta-

tion and crossover operators. We focus mostly on linear controllers, which are very common.

The work presented in this chapter is based on [48]. The source code is available at github.

com/malyzajko/xfp.
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4.1 Exploiting Non-Associativity

Consider a controller for a batch reactor processor [134]. The computation of one state of the

controller is given by the following expression:

(−0.0078)∗st1+0.9052∗st2 + (−0.0181)∗st3 +
(−0.0392)∗st4 + (−0.0003)∗y1+0.0020∗y2

(4.1)

where sti is an internal state of the controller and yi are the inputs. Similar expressions

compute the other states and outputs of the controller. Suppose we want to implement

this controller in fixed-point arithmetic. If we assume an input range of [−10,10] for all

input variables and a uniform bit length of 16, each input variable gets assigned a fixed-

point format with 4 integer and 11 fractional bits. The constant −0.0078 gets 22 fractional

bits: 0.0078 < 216−1−22 = 2−7 = 0.0078125. If we multiply st1 now by −0.0078, the result will

have 33 bits, which we fit into 16 bits by performing a right shift. Continuing in this fashion

and following the order of arithmetic operations in (4.1) we obtain the following fixed-point

arithmetic program:

val tmp0 = ((-32716l * st1) >> 18)

val tmp1 = ((29662l * st2) >> 15)

val tmp2 = ((tmp0 + (tmp1 << 4)) >> 4)

val tmp3 = ((-18979l * st3) >> 16)

val tmp4 = (((tmp2 << 4) + tmp3) >> 4)

val tmp5 = ((-20552l * st4) >> 15)

val tmp6 = (((tmp4 << 4) + tmp5) >> 4)

val tmp7 = ((-20133l * y1) >> 22)

val tmp8 = (((tmp6 << 4) + tmp7) >> 4)

val tmp9 = ((16777l * y2) >> 19)

val tmp10 = (((tmp8 << 4) + tmp9) >> 4)

return tmp10

A fixed-point arithmetic implementation of the controller can have a large round-off error.

For instance, with a bit length of 16, the input values can already have a round-off error as

large as 0.00049. We can apply our affine arithmetic-based analysis presented in chapter 2 to

compute an upper bound on the overall error of 3.9e-3. Since this technique computes worst-

case errors, it is not necessarily clear whether such large errors can indeed occur. Running a

simulation with a double floating-point and a fixed-point implementation side by side on a

large number of random inputs, we obtain a lower bound on the error of 3.06e-3. So indeed,

the error can be quite big.

One way to reduce the error is to increase the bit length. If we add one bit to each variable, we

get a simulated maximum error of 1.51e-3, which is an improvement by about 50%. However,

increasing bit widths may require implementing circuits with larger areas or using larger data
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expression simulated error

original 3.06e-3
worst rewrite 3.11e-3
additional bit 1.52e-3
best rewrite 1.39e-3
best found by GP 1.39e-3

Table 4.1 – Summary of absolute errors for different implementations

types, and may not be feasible. A different possibility is to use a different order of evaluation

for the expression. As fixed-point arithmetic operations are not associative, two different

evaluation orders for the same implementation can have significantly different round-off

errors. If we reorder Equation (4.1) as

((0.9052∗st2)+ (((st3∗−0.0181) + (−0.0078∗st1)) +
(((−0.0392∗st4) + (−0.0003∗y1))+ (0.002∗y2))))

(4.2)

and again implement it using 16-bit fixed-point arithmetic, we find by simulation an (under-

approximated) error bound of 1.39e-03. This is an even larger improvement of 55% than by

increasing the bit length, without requiring any extra resources. Figure 4.1 summarizes the

worst-case error bounds for the different formulations of the expression. By exhaustively

enumerating all possible rewrites, we see that the maximum error bounds can vary between

approximately 1.39e-3 and 3.11e-3. That is, even for a relatively short example, the worst error

bound can be over a factor of 2 larger than the best possible one. The main reason for these

differences comes the fact that changing the order of execution may change the intermediate

ranges of variables, which in turn influence the fixed-point formats and round-off errors, as

well as the propagation in the case of nonlinear operations.

Since exhaustive enumeration becomes infeasible very quickly, we want to search the space of

possible implementations of an arithmetic expression in more a effective fashion, with the

goal to find one that has the minimum fixed-point implementation error bound. We have

chosen genetic programming (GP) as our search procedure. On our example, GP can find the

optimal expression without an exhaustive enumeration and can do this at analysis time. This

does not cost any additional resources, thus we get the additional accuracy “for free”.

4.2 Search with Genetic Programming

We now describe our algorithm to find a fixed-point implementation of a mathematical

expression which reduces the overall round-off error over a straight-forward implementation.

That is, given a real-valued expression t we aim to find an expression t ′ that is mathematically

equivalent to t and whose implementation in fixed-point arithmetic t̃ ′ minimizes, among all
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equivalent expressions, the worst-case absolute error over all inputs in given ranges I :

min
equivalent t ′

max
x∈I

∣∣∣t (x)− t̃ ′(x)
∣∣∣.

Our tool accepts as input an arithmetic expression generated by the following grammar:

t ::= c | x | t1 + t2 | t1 − t2 | t1 ∗ t2 | t1/t2

where c and x are rational constants and variables, respectively. The output is an alternative

expression with a different order of computation whose error according to our static analysis is

smaller than from the original one. If our tool cannot find a better rewrite, it returns the original

expression. We also generate the corresponding integer-valued fixed-point implementation.

4.2.1 Genetic Programming

Genetic programming is part of the broad class of genetic algorithms. These heuristic search

algorithms, inspired by natural evolution, are parameterized by a fitness function to evaluate

a candidate solution as well as operators called mutation and crossover to generate new

candidate solutions from previous ones. The general algorithm maintains a population

of candidate solutions, and evolves the current population in phases called generations. An

evolution step picks two candidates from the current generation, and computes new candidate

solutions by applying the mutation and crossover operations. The quality of the new solution is

evaluated with the fitness function, and the new candidate is added to the next generation if the

fitness function assigns a sufficiently high score to it. In genetic algorithms, candidate solutions

are usually represented by strings, for which mutation and crossover can be defined easily.

Selection of candidates from the population for mutation and crossover can be performed for

example by tournament selection where a fixed number of candidates is chosen at random

and the one with the highest fitness is selected as the final candidate. This allows, with

some probability, “less fit” candidates to participate in the evolution process. Together with

mutation and crossover, this allows for a search which can explore different parts of the

search space quickly and has a smaller possibility to be caught in a local optimum. Genetic

programming [129] is a variant of a genetic algorithm that performs the search over computer

programs, i.e. their abstract syntax trees (AST), instead of strings, with mutation and crossover

adapted accordingly.

4.2.2 Instantiating Genetic Programming

Algorithm 4.1 gives an overview of our search procedure, whose steps we explain in the

following paragraphs. The input is a real-valued expression and ranges for its input variables.

Our tool initializes the initial population with 30 copies of this expression. Our mutation and

crossover operators need to generate expressions that are mathematically equivalent to the

initial expression. Since standard genetic programming poses no constraints on generated
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Input: expression, input ranges
2 initialize population of 30 expressions

4 repeat for 30 generations
generate 30 new expressions:

6 select 2 expressions with tournament selection
do equivalence-preserving crossover

8 do equivalence-preserving mutation
evaluate fitness (roundoff error)

10

Output: best expression found during entire run

Figure 4.1 – Best expression search procedure

expressions and can also generate invalid ones, we define special purpose mutation and

crossover operators ourselves. Our fitness function quantifies the worst-case numerical error

between the fixed-point implementation and the mathematical expression.

Mutation Standard mutation in genetic programming first selects a random node in the

expression AST and mutates it by either replacing it entirely with a different AST node, or

by modifying its information. In our instantiation, the mutation operator applies one of the

applicable rewrite rules from Figure 4.2 to the randomly selected node. The rules capture the

usual commutativity, distributivity and associativity of real arithmetic and preserve mathe-

matical equivalence. Some of these rules do not have an effect on the numerical accuracy

by themselves, but are necessary to generate other rewrites of an expression. To keep the

operations simple, we rewrite subtractions (x − y → x + (−y)) and divisions (x/y → x ∗ (1/y))

before the GP run.

Crossover Usual genetic programming crossover picks a random subtree each from two

expression candidates and exchanges them, creating two new expressions ASTs. As our

constraint is to produce mathematically equivalent expressions, we need to find two subtrees

that are mathematically equivalent. The following algorithm is incomplete in the sense that it

may fail to find such a pair. It is, however, efficient as it does not perform a general equivalence

check, and we have observed its effectiveness in practice.

(x + y) + z = x + (y + z) (-x) * y = - (x * y) (x * y) + (x * z) = x * (y + z)
x + y = y + x x * (-y) = - (x * y) (x * z) + (y * z) = (x + y) * z
(-x) + (-y) = -(x + y) 1/x * 1/y = 1/(xy) (x * y) + (z * x) = x * (y + z)
(x * y) * z = x * (y * z) - (1/x) = 1/(-x) (y * x) + (x * z) = (y + z) * x
x * y = y *x

Table 4.2 – Rewrite rules
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Given two trees t1 and t2 as candidates, the crossover algorithm picks a random node in t1,

which is the root of the subtree we call s1. To ensure that crossover produces a mathematically

equivalent expression, we have to find a subtree s2 in t2 that is mathematically equivalent to

s1 in an efficient way. Instead of implementing a general decision procedure, each subtree is

annotated at initialization time (line 2 in Figure 4.1) with a label that is the string representation

of the expression at that subtree. During mutation, labels are preserved in the new generation

as much as possible. For example, suppose we have the node (x+y)+z, with label (x + y) + z.

We can apply mutation rule 1 to obtain x + (y + z) but the label will remain (x + y) + z. Note

that some of the mutation rules break equivalences (e.g. the rules in the third column), hence

not all labels can be preserved. In that case we add a new label. During crossover, we then

only need to check for identical labels. If labels match, it means that the subtrees come from

the same initial subtree and hence are mathematically equivalent and we can exchange them

in a crossover operation.

Parameters Our genetic programming pipeline has several parameters that can influence

the results: the population size (we choose 30 as we observed no benefit beyond this value),

the number of best individuals passed on to the next generation unchanged (elitism) (0, 2

or 6), the number of individuals considered during tournament selection (2, 4 or 6), and

the probability of crossover (0.0, 0.5, 0.75 or 1.0). The most successful setting we found is

with a tournament selection among 4 and an elitism of 2 while performing crossover every

time, i.e. with probability of 1.0. Note, however, that even in the case of other settings, the

improvements are still significant (on the order of 50%).

4.2.3 Fitness Evaluation

We use the round-off error analysis from chapter 2 as our fitness function, now applied to fixed-

point arithmetic. This analysis is similar to [60], but we treat constants like normal variables

and we do not discard higher order terms to ensure that the error bounds we compute are

sound with respect to real arithmetic.

If we are interested in proving that the round-off errors stay within certain bounds, the com-

puted absolute bounds on these errors need to be as tight as possible. The main requirement

on the analysis in our current problem is slightly different, however. While tight bounds on

errors are an advantage, what we need to know is the relative precision of our analysis tool.

That is, we need to know whether the analysis tool is able to distinguish a better implemen-

tation from a less accurate one. This is not necessarily given, because the analysis assumes

worst-case errors at each computation step and these will, in general, not be attained every

time. Hence, our tool may report a difference between two expressions that is due to the

over-approximations of the algorithm and not a true difference in accuracy.

Thus, before using our analysis tool in a GP framework, we evaluated this property experimen-

tally. We generated a number of random rewrites for an expression, for which we then obtain
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Figure 4.2 – Comparison of analyzed upper bound and simulated lower bound on maximum
errors for a linear and a nonlinear benchmark

the (approximate) actual errors by simulation. We present here the results for one linear and

one nonlinear benchmark (batch controller, state 2 and rigid body, out 1 respectively). For 100

different random expression formulations, the ratio between the analyzed upper bound on

the error and the simulated lower bound on the error has a mean of 1.29387 and a variance of

0.00082 for the batch controller, state 2 benchmark and a mean of 1.66697 and a variance of

0.08315 for the rigid body, out 1 benchmark. Figure 4.2 shows a direct comparison between

the analyzed and simulated errors. In the linear case, the computed bounds on the errors are

proportional to the actual errors, thus indicating a good relative precision. In the nonlinear

case the correspondence is not as accurate, however we expect it to be still sufficient for our

purpose. The “more nonlinear” a computation becomes, the less accurate we expect affine

arithmetic to be in discriminating expressions by accuracy.

Effectively, our search algorithm with this fitness function returns the expression for which it

is able to prove the smallest error bound. Even if this does not happen to be the truly optimal

one, for many applications or certification purposes it is already useful to obtain (an otherwise

equivalent) expression but with a smaller proven error bound.

51



Chapter 4. Synthesizing Accurate Fixed-Point Expressions

4.2.4 Why Genetic Programming?

It is in general not evident from an expression whether its order of computation is good with

respect to accuracy and exhaustively enumerating all possible formulations of expressions

becomes impossible very quickly. For only linear expressions the number of possible orders

of adding n terms modulo commutativity, which does not affect accuracy, is (2n −3)!!1. For

our example from Section 4.1 with 6 terms there are already 945 expressions. For our largest

benchmark with 15 terms there are too many possibilities to enumerate.

We thus need a suitable search strategy to find a good formulation of an expression among all

the possibilities. We want to minimize intermediate ranges of variables, but because the inputs

for the expressions can, in general, be positive and negative, optimizing one subcomputation

may lead to a very large intermediate sum in a different part of the expression. An algorithm

that tries to find the optimal solution in a systematic way (e.g. dynamic programming) is

thus unlikely to succeed. Our problem also does not have a notion of a gradient, so gradient

descent approaches are not readily applicable. Furthermore, the problem cannot be easily

formulated in terms of inputs and outputs or constraints, so constraint solving approaches

are not applicable either. Genetic programming does not rely on any of these features, and its

formulation as a search over program ASTs fits our problem well.

4.3 Experimental Results

We have implemented our genetic programming algorithm inside the Java-based Evolution-

ary Computation Research System (ECJ) [105] using the round-off error analysis presented

in chapter 2. For this application, we used the rational implementation, as the expressions

tend to be evaluated are relatively short.

Benchmarks come from the controller domain: a bicycle model [12], a DC motor position

control [2], a pitch angle control [2], an inverted pendulum [2], and a batch reactor process [75].

The controllers for these systems are taken from [108], which attempted to minimize the size

of the region of practical stability by choosing a controller whose fixed-point implementation

has the best possible bound on the error among all controllers that stabilize the plant. To

show the scalability of our tool we choose the example of a locomotive pulling a train car

where the connection between the locomotive and the car is modeled by a spring in parallel

with a damper [114]. By increasing the number of cars, we can increase the dimension of

the system. We also consider a nonlinear controller for a rigid body [10] and the nonlinear

B-splines functions [101]. Though most of our benchmarks are from the controller domain,

nothing in our approach is actually domain specific.

1The number of full binary trees with n leaves is Cn−1, where Cn are the Catalan numbers. We can label each of

the trees in n! ways. Taking into account commutativity gives: Cn−1·n!
2n−1 .
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Each benchmark consists of one expression and ranges for its input parameters. We wish to

minimize the error on the one output value it computes over all possible inputs. Some of the

benchmarks compute internal states of a controller (denoted with e.g. “state 1”). Since each

state is computed with a different expression, we treat them here as separate benchmarks. For

all benchmarks we consider a fixed bit length, signed fixed-point format, and truncation as

the rounding mode.

4.3.1 End-to-End Results

Tables 4.3 and 4.4 list the maximum absolute errors (as computed by our analysis tool) for the

best expressions found by GP for all our benchmarks. The results were obtained with the best

parameter settings we found: elitism: 2, tournament selection: 4, with and without crossover

(seed used in ECJ: 4357). The best found expression is the same for different bit lengths, so the

computed results are applicable in several different hardware settings. The benchmarks are

ordered approximately by complexity with the smaller linear benchmarks in Table 4.3 and the

nonlinear benchmarks in Table 4.4. From the third column we can see that we get substantial

improvements in accuracy of up to 70%.

Benchmark err
orig.- no-cross

orig.
orig.- best

orig. g

bicycle (out1) 2.66e-3 0.00 0.00 -

bicycle (state1) 2.53e-4 0.19 0.19 1

bicycle (state2) 1.82e-4 0.00 0.00 -

dc motor (out1) 1.06e-4 0.00 0.00 -

dc motor (state1) 2.77e-4 0.00 0.00 -

dc motor (state2) 3.75e-4 0.25 0.25 4

dc motor (state3) 1.27e-4 0.00 0.00 -

pendulum (out1) 8.09e-8 0.03 0.03 5

pendulum (state1) 5.13e-9 0.17 0.17 1

pendulum (state2) 6.11e-9 0.38 0.38 16

pendulum (state3) 5.14e-9 0.00 0.00 -

pendulum (state4) 4.97e-9 0.27 0.27 7

pitch angle (out1) 1.33e-7 0.18 0.18 4

pitch angle (state1) 4.26e-9 0.30 0.30 2

pitch angle (state2) 2.79e-9 0.00 0.00 -

pitch angle (state3) 3.81e-9 0.20 0.20 2

Table 4.3 – Maximum absolute errors for the best expression found by GP (first part). g denotes
the generation in which the solution is found.
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Benchmark err
orig.- no-cross

orig.
orig.- best

orig. g

batch reactor (out1) 5.15e-4 0.00 0.00 -

batch reactor (out2) 1.28e-3 0.12 0.12 2

batch reactor (state1) 3.46e-4 0.15 0.15 1

batch reactor (state2) 2.77e-4 0.00 0.00 -

batch reactor (state3) 3.55e-4 0.26 0.26 2

batch reactor (state4) 4.11e-4 0.23 0.23 7

traincar 1 (out) 1.11e-4 0.09 0.09 2

traincar 1 (state 1) 1.98e-6 0.03 0.03 6

traincar 1 (state 2) 3.57e-7 0.25 0.25 16

traincar 1 (state 3) 2.79e-7 0.24 0.24 7

traincar 2 (out) 7.40e-5 0.09 0.09 19

traincar 2 (state 3) 1.23e-7 0.49 0.59 21

traincar 3 (out) 1.26e-3 0.13 0.13 7

traincar 3 (state 6) 1.32e-7 0.48 0.58 21

traincar 3 (state 7) 1.31e-7 0.43 0.53 17

traincar 4 (out) 9.34e-3 0.26 0.29 27

traincar 4 (state 1) 7.29e-8 0.73 0.73 19

traincar 4 (state 2) 7.34e-8 0.67 0.73 25

traincar 4 (state 3) 1.01e-7 0.66 0.60 14

traincar 4 (state 4) 6.96e-8 0.64 0.70 26

traincar 4 (state 5) 1.42e-7 0.61 0.68 26

traincar 4 (state 6) 1.67e-7 0.59 0.59 16

traincar 4 (state 7) 1.67e-7 0.56 0.56 13

traincar 4 (state 8) 1.38e-7 0.60 0.60 19

traincar 4 (state 9) 1.67e-7 0.47 0.47 7

bspline 1 2.29e-4 0.36 0.36 6

bspline 2 1.66e-4 0.52 0.52 4

rigid-body (out1) 1.08e-1 0.33 0.33 5

rigid-body (out2) 9.92e-1 0.20 0.20 15

Table 4.4 – Maximum absolute errors for the best expression found by GP (second part). g
denotes the generation in which the solution is found.
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Benchmark Original
Best

(% of original)
Worst

(% of original)
Added bit

(% of original)

batch processor (out 1) 2.89e-3 0.91 1.37 0.51

batch processor (out 2) 7.20e-3 0.81 1.13 0.49

batch processor (state 1) 2.66e-3 0.52 1.02 0.50

batch processor (state 2) 3.06e-3 0.45 1.03 0.50

batch processor (state 3) 2.66e-3 0.50 1.16 0.49

batch processor (state 4) 2.24e-3 0.61 1.40 0.51

traincar 1 (out) 5.29e-5 0.78 1.02 0.60

traincar 1 (state 1) 1.02e-6 0.97 1.01 0.50

traincar 1 (state 2) 2.66e-7 0.71 1.02 0.52

traincar 1 (state 3) 2.04e-7 0.74 1.14 0.48

Table 4.5 – Best and worst absolute errors among exhaustively enumerated rewritings, deter-
mined by simulation

It can be shown [48] that our rewriting procedure, when implemented inside a tool that per-

forms a search for a best controller [108], can provide significant improvements in the size of

the region of practical stability. This result also shows that our technique is orthogonal to other

optimization strategies and can thus be used in addition to provide further improvements.

4.3.2 Exhaustive Rewriting

For our smaller benchmarks (linear with up to 6 terms) we also generate all possible rewrites

up to commutativity and determine tight bounds on the maximum errors by simulation. For

this, we first automatically generate a fixed-point implementation, which we then evaluate on

a number of random inputs. We use double precision floating-point code as reference, thus

obtaining a lower bound on the error. Using a large enough number of random inputs (107),

we obtain reasonably tight error bounds. Table 4.5 shows the simulation results for the original

formulation of the expression and the best and worst among all the possible rewrites. From

the 10 benchmarks, 6 have an error in the original formulation that is about as bad as it gets.

But we can also see that the best possible rewrite can improve the accuracy substantially. On

the other hand, the expression may also be such that no matter how we rewrite it, the accuracy

does not vary much, as is the case with the traincar 1, state 1 benchmark. This case, however,

seems to be rather rare.

Anther possibility of improving the accuracy is to increase the bit lengths (possibly selectively).

We do so in a minimal way by allowing one more bit for each intermediate variable, i.e.,

we increase the bit length by one and evaluate the accuracy with simulation. Note that in

many cases, such a gradual increase may not be possible and one would have to add a whole
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word, e.g. go from 16 to 32 bits, with the associated increase in hardware cost. Compile-time

transformations, on the other hand, come “for free” and, as Table 4.5 shows, can have an effect

on the same order of magnitude as the addition of a bit. In the case of longer benchmarks,

the effect of rewriting can be even larger (see Table 4.4), while the added bit always gains only

about 50% of accuracy as compared to the original error.

4.3.3 Genetic Programming

Tables 4.3 and 4.4 shows the results obtained for the most successful setting we have found.

It also shows the results with crossover turned off. The comparison of these two columns

suggests that crossover is helpful. We therefore expect that randomized local search techniques

are not as effective as genetic programming, but they still produce useful reductions in the

errors.

Optimality For the smaller benchmarks, GP always finds the same expressions with respect

to the error bounds. Exhaustive enumeration has confirmed that the found expressions are

indeed the optimal ones. For larger benchmarks, we do get improvements and we know of no

technique to obtain better results.

Performance The runtimes of our GP algorithm depend in general mostly on the number

of generations considered and the population size. Crossover only has a small effect on the

overall runtime, but we have found that it provides the best results in the setting given above.

In Table 4.6 we report the running times of our benchmarks with the default setting of 30

generations with a population size of 30 and the best GP settings we found.

Examples Runtime (s)

batch (out1) 1.964

batch (state2) 2.735

traincar 1 (state 3) 6.358

traincar 2 (state 5) 9.794

traincar 3 (state 7) 15.388

traincar 4 (state 9) 17.228

rigid-body (out1) 1.394

rigid-body (out2) 2.698

bspline 1 2.234

Table 4.6 – Average runtimes of GP on selected benchmarks in seconds. Experiments were
performed on a 3.5GHz Linux desktop with 16GB RAM.
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Example GP Random (Random-GP)/Random

traincar 4 (out) 0.00934 0.0103 0.09

traincar 4 (1) 7.29e-8 2.07e-7 0.65

traincar 4 (2) 7.34e-8 2.08e-7 0.65

traincar 4 (3) 1.01e-7 1.90e-7 0.47

traincar 4 (4) 6.96e-8 1.74e-7 0.60

traincar 4 (5) 1.42e-7 3.21e-7 0.56

traincar 4 (6) 1.67e-7 2.86e-7 0.42

traincar 4 (7) 1.67e-7 2.57e-7 0.35

traincar 4 (8) 1.38e-7 2.28e-7 0.39

traincar 4 (9) 1.67e-7 1.97e-7 0.15

Table 4.7 – Comparison of maximal errors between best expressions from GP and random
search

Efficiency Improvement over Random Search For the expressions of the traincar 4 con-

troller (15 terms) we also compare the results from the GP algorithm against a random search.

This experiment is performed by generating 900 random and unique rewrites of the original

expression, and comparing the best seen expressions against each other. Since we run the GP

algorithm for 30 generations with a population of 30, we can see at most 900 unique expres-

sions. As the results in Table 4.7 confirm, the GP based search is more effective than a random

one. The third column shows the relative difference between the errors. Thus, many times the

GP found expression is by over 50% more accurate than a randomly found one. That GP does

not perform a random search can also be seen on the evolution of the population in Figure 4.3

for one benchmark (traincar 4, state 1). The plot shows the best, worst and the average errors

of the expressions in each generation. The convergence to a low-error expression is clear.
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Figure 4.3 – Evolution of errors across generations for the traincar 4 - state 1 example
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4.4 Conclusion

We have presented a genetic programming based search for synthesizing fixed-point arith-

metic expressions with improved errors bounds. We have systematically investigated the

effect of rewriting on the round-off errors, the suitability of an affine-arithmetic based static

analysis technique as the fitness function, as well as the effects of mutation and crossover. A

light-weight static analysis such as our chosen one is particularly practical for a search like

genetic programming, because it is fast and can thus be applied repeatedly. In addition, it has

the advantage that returned results come with sound error bounds.
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So far, we have presented an analysis technique for estimating round-off errors in finite-

precision code, as well as an application in a runtime library for floating-points and inside a

genetic programming algorithm to find more accurate fixed-point implementations. Both of

these applications have in common that they require the programmer to choose the data type

up front and then to remember verifying the accuracy of results, essentially leaving accuracy

considerations an afterthought.

In this chapter, we propose an alternative way of programming numerical code by introducing

a specification language with a real semantics together with a high-level compilation and

verification algorithm. Our language includes numerical errors explicitly and uses these

specifications to determine a suitable finite-precision data type automatically.

This chapter is based on the paper [47]. The presented framework has been implemented

inside the tool called Rosa, and is part of the Leon verification framework [21] and relies on the

Z3 solver [53] in the back-end. Its source code is available at github.com/malyzajko/rosa.

5.1 Programming in Reals

Many current approaches for verifying numerical programs start with the finite-precision

implementation and then try to verify the absence of (runtime) errors. Not only are such

verification results specific to a given representation of numbers, but the absence of run-time

errors does not guarantee that program behavior matches the desired specification expressed

using real numbers. Fundamentally, the source code semantics is mostly expressed in terms

of low-level data types such as floating-points. This is problematic not only for developers

but also for compiler optimizations, because, e.g. code transformations based on associativity

such as those presented in chapter 4 are unsound with respect to such source code semantics.

We propose the following alternative: source code programs should be expressed in terms

of mathematical real numbers and determining which data type is suitable for the low-level

implementation should be done, or at least supported by automated tools. In our system,
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the programmer writes a program using a Real data type, including pre- and postconditions

which specify explicitly the uncertainties on inputs as well as the desired accuracy of the result.

It is then up to our trustworthy compiler to check, taking into account all uncertainties and

their propagation, that the desired accuracy can be soundly realized in a finite-precision

implementation. If so, the compiler chooses and emits one such implementation, selecting

from a range of (software or hardware) floating-point or fixed-point arithmetic representations.

Viewing source code as operating on real numbers has many advantages:

Separation of concerns A program written with reals separates the mathematical algorithm

from its low-level implementation details. Programmers can reason about correctness

using real arithmetic instead of finite-precision arithmetic. We achieve separation of

the design of algorithms (which may still be approximate for other reasons) from their

realization using finite- precision computations.

Verification over reals We can verify the ideal meaning of programs using techniques devel-

oped to reason over real numbers, which are more scalable and better understood than

techniques that directly deal with finite-precision arithmetic. If we then also establish

bounds on how far the results computed with finite precision are from the real-valued

ones, we can obtain overall correctness guarantees.

Compiler optimizations The compiler for reals is free to do optimizations as long as they

preserve the accuracy requirements. This allows the compiler to apply, for example,

associativity of arithmetic (for example as described in chapter 4), or even select different

approximation schemes for transcendental functions.

Specification of ideal behavior A real specification language provides us with the ideal be-

havior of the program. We can use this as the baseline against which to compare approx-

imate implementations. This enables us to quantify the deviation of implementation

outputs from ideal ones, instead of merely proving e.g. range bounds of floating-point

variables which is used in simpler analyses that check for runtime error freedom.

5.1.1 A Real Specification Language

In our framework each program to be compiled consists of one top-level object with methods

written in a functional subset of the Scala programming language [125]. Choosing only the

functional subset makes, on the one hand, the verification task easier, but on the other hand,

we believe that this subset is also closer to mathematical semantics.

All methods are functions over the Real data type and the user annotates them with pre- and

postconditions that explicitly talk about uncertainties. Real represents ideal real numbers

without any uncertainty. We allow arithmetic expressions over Reals with the standard arith-

metic operators {+,−,∗,/,p}, and together with conditionals and function calls they form the

body of methods. Our tool also supports immutable variable declarations such as val x = ....
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def triangle(a: Real, b: Real, c: Real): Real = {
require(1.0 < a && a < 9.0 && 1.0 < b && b < 9.0 && 1.0 < c && c < 9.0 &&

a + b > c + 0.1 && a + c > b + 0.1 && b + c > a + 0.1)

val s = (a + b + c)/2.0
sqrt(s * (s - a) * (s - b) * (s - c))

} ensuring (res => 0.29 <= res && res <= 35.1 && res +/- 2.7e-11 &&
0.29 <= ~res && ~res <= 35.1)

Figure 5.1 – Example function written in our specification language

Loops can be expressed with recursive functions. This language allows the user to define the

ideal (or baseline) computation over real numbers. Note that this specification language is

not executable.

For example, recall the function computing the area of a triangle from section 3.1. The code

in Figure 5.1 shows a possible specification of this function using our proposed real-valued

semantics. The precondition allows the user to provide a specification of the environment

consisting of lower and upper bounds for all method parameters and an upper bound on the

uncertainty or noise. Range bounds are expressed with regular comparison operators, e.g.

x < 9.0. Uncertainty is expressed with a predicate such as x +/- 2.7e-11, which denotes that

the variable x is only known up to an uncertainty of 2.7e −11. If the programmer does not

specify the noise explicitly, round-off errors are assumed by default. The postcondition can

specify constraints on the output, and in particular the range and the maximum accepted

uncertainty.

In addition to this specification, the user may also provide additional constraints on the

inputs, such as a + b > c + 0.1 in the example. These constraints go beyond simple interval

constraints and are important since they allow us to analyze more general functions. Indeed,

in the triangle area example we do not have to restrict the input ranges such that a negative

radicand does not occur.

Writing x in our language references the ideal real-valued variable. The user may also want to

express that the finite-precision computation does not violate certain bounds. For this case,

our language provides the notation ~x which references the actual value of x when executed

in finite precision, which we denote by x̃.

5.2 Compiling Reals to Finite Precision

Now that we have a real-valued specification, a “verifying” compiler needs to instantiate the

program with a concrete finite-precision data type that satisfies the specification. In the case

where the choice falls on a fixed-point data type, the tool also needs to generate the fixed-point
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code (over integers), for the case of floating-points code generation essentially reduces to

replacing the Real type with the chosen floating-point type. The main task thus consists in

verifying that a given data type satisfies the specification.

To this end, we generate verification conditions which are based on the high-level idea to

explicitly model the ideal program without external uncertainties and round-offs, the actual

program, which is executed in finite precision with possibly noisy inputs, and the relationship

between the two. This is possible exactly because we have the real-valued semantics available

through our real-valued specification. Furthermore, we can encode reasoning about finite-

precision round-off errors into reasoning about real numbers. This allows us on one hand, to

leverage the superior scalability of real-valued solvers over floating-point or bit vector ones.

On the hand, a combination of theories is problematic, and hence encoding everything into

reals lets us consider the relationship between both the real-valued and the finite-precision

computation.

5.2.1 Verification Conditions for Loop-Free Programs

In this and the following chapter we consider loop-free programs. While the presented tech-

niques also work, in principle, for recursive functions, in practice a successful verification

requires the specification to be inductive, including its error part. However, except in very

special cases, round-off errors grow with every iteration, hence inductive specification written

in the language we present here (with constant error bounds) are unlikely to exist. We present

an extension that can handle programs with loops in chapter 7 and the remaining concepts

presented in this chapter carry over to those programs as well.

Our approach constructs the following verification condition for each method with a precon-

dition P and a postcondition Q:

∀x,res, y. P (x)∧bod y(x, y,res) →Q(x,res) (5.1)

where x,res, y , possibly vector valued, denote the input, output and local variables respectively.

Table 5.1 summarizes how verification constraints are generated from our specification lan-

guage for floating-point arithmetic. Each variable x in the specification corresponds to two

real-valued variables x, x̃, the ideal one in the absence of uncertainties and round-off errors

and the actual one, computed by the compiled program. The ideal and actual variables are

related only through the error bounds in the pre- and postconditions, which allows for the

ideal and actual executions to take different paths through the program. In the method body

we have to take into account round-off errors from arithmetic operations and the propagation

of existing errors. Note that the resulting verification conditions are parametric in the machine

epsilon.

Fixed-point arithmetic can, in principle, also be encoded in a similar fashion, albeit with

more complex constraints as it does not admit a dynamic format allocation as floating-point
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a <= x && x <= b x ∈ [a,b]

x +/- k x̃ = x +er rx ∧er rx ∈ [−k,k]

∼x x̃

x ¦ y (ideal part) (x ¦ y)

x ¦ y (actual part) (x̃ ¦ ỹ)(1+δ1)

sqrt(x) (ideal part) sqr t (x)

sqrt(x) (actual part) sqr t (x̃)(1+δ2)

val z = x z = x ∧ z̃ = x̃

if (c(x)) e1(x) ((c(x)∧e1(x))∨ (¬c(x)∧e2(x)))∧
else e2(x) ((c̃(x̃)∧ ẽ1(x̃))∨ (¬c̃(x̃)∧ ẽ2(x̃)))

g(x) g (x)∧ g̃ (x̃)

¦ ∈ {+,−,∗,/}

−εm ≤ δi ∧δi ≤ εm , all δ are fresh

c̃ and ẽ denote functions with roundoff errors at each step

Table 5.1 – Specification language semantics

arithmetic. Current approaches for encoding fixed-point arithmetic rely on bit vectors, whose

use in our case is problematic as we would need to mix bit vector and nonlinear real theories in

the SMT solver. As we will explain shortly ( subsection 5.2.3), such a direct encoding does not

scale well for floating-points already, hence we switch to using approximations immediately.

Our system currently supports the operations {+,−,∗,/,p}, which are the supported opera-

tions of the nonlinear back-end solver Z3. The techniques in the following chapters can be

extended to elementary functions, provided the solver can handle them. Another possible

avenue would be to encode them via Taylor expansions [109].

5.2.2 Specification Generation

In order to give feedback to developers and to facilitate automatic modular analysis, Rosa also

provides automatic specification generation. By this we mean that the programmer still needs

to provide the environment specification in form of preconditions, but our tool automatically

computes an accurate postcondition. Formally, we can rewrite the constraint (5.1) as

∀x,r es. (∃y. P (x)∧body(x, y,r es)) →Q(x,r es)

where Q is now unknown. We obtain the most accurate postcondition Q by applying quantifier

elimination (QE) to P (x)∧body(x, y,r es) and eliminate y . The theory of arithmetic over reals

admits QE so it is theoretically possible to use this approach.

We do not currently use a full QE procedure for specification generation, as it is expensive and it
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is not clear whether the returned expressions would be of a suitable format. Instead, we use our

approximation approach which computes ranges and maximum errors in a forward fashion

and computes an (over) approximation of a postcondition of the form r es ∈ [a,b]∧ r es ±u.

When proving a postcondition, our tool automatically generates these specifications and

provides them as feedback to the user.

5.2.3 Difficulty of Simple Encoding into SMT solvers

For small functions we can already prove interesting properties by using the exact encoding

of the problem just described and discharging the verification constraints with Z3. Consider

the following code a programmer may write to implement the third B-spline basic function

from subsection 3.2.2.

def bspline3(x: Real): Real = {

require(0 ≤ x && x ≤ 1 && x +/- 1e-13)

-x*x*x / 6.0

} ensuring (res => -0.17 ≤ res && res ≤ 0.05 && res +/- 1e-11)

Functions and the corresponding verification conditions of this complexity are already within

the possibilities of the nonlinear solver within Z3 [92]. For more complex functions however,

Z3 does not (yet) provide an answer in a reasonable time, or returns unknown. Whether

alternative techniques in SMT solvers can help in such cases remains to be seen [27].

5.2.4 Compilation Algorithm

Since a direct attempt to solve verification conditions using an off-the-shelf solver alone is not

satisfactory, we use approximations to tackle the verification. Before we address the individual

challenges, we present here an overview of our compilation algorithm.

Given a specification or program over reals and possible target data type(s), Rosa generates

code over floating-point or fixed-point numbers that satisfy the given pre- and postconditions

(and thus meet the target accuracy). Figure 5.2 presents a high-level view of our compilation

algorithm. Rosa first analyses the entire specification and generates one verification condition

for each postcondition to be proven. To obtain a modular algorithm, Rosa also generates

verification conditions that check that at each function call the precondition of the called

function is satisfied. The methods are then sorted by occurring function calls. This allows us

to re-use already computed postconditions of function calls in a modular analysis. If the user

specifies one target data type, the remaining part of the compilation process is performed with

respect to this data type’s precision. If not or in the case the user specified several possible

types, Rosa will perform a binary search over the possible types to find the least in the sorted
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Input: spec: specification over Reals, prec: candidate precisions
for fnc ← spec.fncs
fnc.vcs = generateVCs(fnc)

spec.fncs.sortBy((f1, f2) => f1 ⊆ f2.fncCalls)

while prec 6= ; and notProven(spec.fncs)
precision = prec.nextPrecise
for fnc ← spec.fncs
for vc ← fnc.vcs
while vc.hasNextApproximation ∧ notProven(vc)
approx = getNextApproximation(vc, precision)
vc.status = checkWithZ3(approx)

generateSpec(fnc)
generateCode(spec)

Output: floating-point or fixed-point code

Figure 5.2 – Compilation algorithm

list that satisfies all specifications. The user can provide the list of possible data types manually

and sort them by her individual preference. Currently, the analysis is performed separately for

each data type, which is not a big issue performance wise due to the relatively small number

of alternatives. We did identify certain shared computations between iterations which can be

exploited in the future for more efficient compilation. In order for the compilation process to

succeed, the specification has to be met with respect to some given finite-precision arithmetic.

We envision that in the future the compilation task will also include automatic accuracy-

improving code optimizations.

Rosa can currently generate Scala code over

• fixed-point arithmetic with a 16 or 32 bit width, or

• floating-point arithmetic in single (32 bit), double (64 bit), double-double (128 bit) and

quad-double (256 bit) precision.

Our approach is parametric in the bit width of the representations and can thus be used on

different platforms, from embedded controllers without floating-point units (where fixed-

point implementations are needed), to platforms that expose high-precision floating-point

arithmetic in their instruction set architecture. Using the QuadDouble library [82, 16] we can

also emit code that uses precision twice or four times that of the ubiquitous Double data type.

When multiple representations are available (as specified by the user), the compiler can select,

e.g., the smallest representation needed to deliver the desired number of trusted significant

digits. We currently do not support mixing of data types in one program, but this is possible

avenue for future work.
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functions paths arithmetic

postcondition 

body

merging 

pathwise

uncertainties 

ranges

inline approximate

straight encoding

Figure 5.3 – Approximation pipeline

In case the verification part of compilation fails, our tool prints a failure report with the best

postconditions Rosa was able to compute. The user can then use the generated specifications

to gain insight why and where his or her program does not satisfy the requirements. This

computed postcondition is also printed with the successfully generated program.

While we have implemented our tool to accept specifications in a domain specific language

embedded in Scala and generate code in Scala, all our techniques apply equally to all pro-

gramming languages and hardware that support the floating-point features we assume (sub-

section 2.1.1).

5.2.5 Verification with Approximations

We now describe the approximations Rosa uses to soundly compile more interesting programs.

We use an approximation pipeline, which exploits different combinations of approximations of

nonlinear arithmetic, function calls, and paths due to conditionals. Each can be approximated

at different levels and we have observed in our experiments, that one size does not fit all

and a combination of different approximations is most successful in proving the verification

conditions we encountered in our examples. The computed approximations can also be

directly used to generate the postconditions.

For each verification condition we thus construct approximations until we are able to prove

one, or until we run out of approximations where we report the verification as failed. We

can thus view verification as a stream of approximations to be proven. We illustrate the

pipeline that computes the different approximations in Figure 5.3. The first approximation

(indicated by the long arrow) is to use Z3 alone on the entire constraint constructed by

the rules in Table 5.1. This is indeed an approximation, as all function calls are treated

as uninterpreted functions in this case. This approximation only works for floating-point

precisions in very simple cases without function calls. Then, taking all possible combinations

of subcomponents in our pipeline we obtain the other approximations, which are filtered

according to the presence of function calls or conditional branches.
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Function calls If the verification constraint contains function calls, Rosa will attempt to first

inline postconditions. We support inlining of both user-provided postconditions and post-

conditions computed by our own specification generation procedure. If this is not accurate

enough (and the function is not recursive), we inline the entire function body.

Postcondition inlining is implemented by replacing the function call with a fresh variable and

constraining it with the postcondition. Thus, if verification succeeds with inlining the post-

condition, we avoid having to consider each path of the inlined function separately and can

perform modular verification avoiding a potential path explosion problem. Obviously, such

modular verification is only feasible when postconditions are accurate enough. Section 6.2

presents an improvement over the error bound computation from chapter 2.

Paths In the case of several paths through the program, we have the option to consider each

path separately or to merge results at each join in the control flow graph. This introduces a

trade-off between efficiency and accuracy, since on one hand, considering each path sepa-

rately leads to an exponential number of paths to consider. On the other hand, merging at

each join looses correlation information between variables which may be necessary to prove

certain properties. Our approximation pipeline chooses merging first, before resorting to a

path-by-path verification in case of failure. We believe that other techniques for exploring

the path space could also be integrated into our tool [97, 34]. Another possible improve-

ment are heuristics that select a different order of approximations depending on particular

characteristics of the verification condition.

Another aspect of conditional branches are discontinuity errors. These capture the difference

in the result when the finite-precision computation takes a different path through the program

than the ideal real-valued one. Whether this divergence happens and how large it becomes de-

pends on the errors of the variables in the branch condition. Section 7.1 presents two possible

approaches we have developed to tackle this challenging problem. Since this computation

may be costly, Rosa includes a @robust annotation, which signals that the discontinuity errors

have been treated already and need not be re-checked.

Arithmetic The arithmetic part of the verification constraints generated by Table 5.1 can be

essentially divided into the ideal part and the actual part, which includes round-off errors at

each computation step. The ideal part determines whether the ideal range constraints in the

postcondition are satisfied and the actual part determines whether the uncertainty part of the

postcondition is satisfied.

Based on this, our tool first constructs an approximation which leaves the ideal part un-

changed, but replaces the actual part of the constraint by the computed uncertainty bound.

This effectively removes a large number of variables and is many times a sufficient simplifi-

cation for Z3 to succeed in verifying the entire constraint. If Z3 is still not able to prove the

constraint, our tool constructs the next approximation by also replacing the ideal part, this
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time with a constraint of the result’s range which has been computed by our approximation

procedure previously. Note that this second approximation may not have enough informa-

tion to prove a more complex postcondition, as correlation information is lost. We note that

the computation of ranges and errors is the same for both approximations and thus trying

both does not affect efficiency significantly. In our experiments, Z3 is able to prove the ideal,

real-valued part in most cases, so this second approximation is rarely used.

Our approximation for arithmetic satisfies the following:

([a,b],er r ) = evalWithError(P,expr ) ⇒
∀x, x̃,res, ˜res.P (x, x̃)∧ res= expr(x)∧ ˜res= ˜expr(x̃)

→ a ≤ res∧ res≤ b ∧|res− ˜res| < err

That is, the procedure evalWithError computes a sound over-approximation of the range of

an expression and of the uncertainty on the output. In particular, the affine arithmetic-based

procedure from chapter 2 for ranges of inputs satisfies the constraint and can be used here. It

turns out, however, that for many even short computations this procedure is very inaccurate

and we present significant improvements in chapter 6 using the power of a nonlinear SMT

solver both for the estimation of the ranges and the errors.

Counter-examples Our procedure is sound because our constraints over-approximate the

actual errors. Furthermore, even in the full constraint as generated from Table 5.1, round-

off errors are over-approximated since we assume the worst-case error bound at each step.

While this ensures soundness, it also introduces incompleteness, as we may fail to validate a

specification because our over-approximation is too large. This implies that counterexamples

reported by Z3 are in general only valid if they disprove the ideal real-valued part of the

verification constraint. Our tool checks whether this is the case by constructing a constraint

with only the real-valued part, and reports the counterexamples, if such are returned from Z3.

5.3 Experience

Before we explain our employed techniques in detail, we illustrate the capabilities of our

system on a number of examples.

5.3.1 Polynomial Approximations of Sine

We illustrate the verification algorithm on the example in Figure 5.4, using double floating-

point precision as the target. The functions sineTaylor and sineOrder3 are verified first

since they do not contain function calls. Verification with the straight encoding fails. Next,

Rosa computes the round-off errors on the output and Z3 succeeds to prove the resulting
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def comparisonValid(x: Real): Real = {
require(-2.0 < x && x < 2.0)
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 - z2

} ensuring(res => res <= 0.1 && res +/- 5e-14)

def comparisonInvalid(x: Real): Real = {
require(-2.0 < x && x < 2.0)
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 - z2

} ensuring(res => res <= 0.01 && res +/- 5e-14)

def sineTaylor(x: Real): Real = {
require(-2.0 < x && x < 2.0)
x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0

} ensuring(res => -1.0 < res && res < 1.0 && res +/- 1e-14)

def sineOrder3(x: Real): Real = {
require(-2.0 < x && x < 2.0)
0.954929658551372 * x - 0.12900613773279798*(x*x*x)

} ensuring(res => -1.0 < res && res < 1.0 && res +/- 1e-14)

Figure 5.4 – Different polynomial approximations of sine

constraint with the ideal part untouched. From this approximation Rosa directly computes a

new, more accurate postcondition, in particular it can narrow the resulting errors to 1.48e-15

and 1.23e-15 respectively. Next, our tool considers the comparisonValid function. Inlining

only the postcondition is not enough in this case, but computing the error approximation

with the functions inlined succeeds in verifying the postcondition. Note that our tool does

not approximate the real-valued portion of the constraint, i.e. Z3 is used directly to verify

the constraint z1− z2 ≤ 0.1. This illustrates our separation of the real reasoning from the

finite-precision implementation: with our separation we can use a real arithmetic solver to

deal with algorithmic reasoning and verify with our error computation that the results are

still valid within the error bounds in the implementation. Finally, the tool verifies that the

preconditions of the function calls are satisfied by using Z3 alone. Verification of the function

comparisonInvalid fails with all approximations. Our tool is able to determine that the ideal

real-valued constraint alone (z1− z2 ≤ 0.01) is not valid, reports a counterexample (x = 1.875)

and returns invalid as the verification result.
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5.3.2 Trade-off between Accuracy and Efficiency

Which data type is suitable for a given program depends on the parameter ranges, the code

itself but also the accuracy required by the application using the code. For example, take

the functions in Figure 5.5. Depending on which accuracy on the output the user needs, our

tool will select different data types. For the requirement res +/- 1e-12, as specified, Double

is a suitable choice for doppler and turbine [151], however for the jetEngine example [10]

this is not sufficient, and thus DoubleDouble would be selected by our tool. The user can

influence which data types are preferred by supplying a list to our tool which is ordered by her

preference.

Figure 5.6 illustrates the trade-off between the accuracy achieved by different data types

against the runtime of the compiled code generated by our tool. We used the Caliper [1]

framework for benchmarking the running times.

def doppler(u: Real, v: Real, T: Real): Real = {
require(-100 < u && u < 100 && 20 < v && v < 20000 && -30 < T && T < 50)

val t1 = 331.4 + 0.6 * T
(- (t1) *v) / ((t1 + u)*(t1 + u))

} ensuring(res => res +/- 1e-12)

def jetEngine(x1: Real, x2: Real): Real = {
require(-5 < x1 && x1 < 5 && -20 < x2 && x2 < 5)

val t = (3*x1*x1 + 2*x2 - x1)
x1 + ((2*x1*(t/(x1*x1 + 1))*
(t/(x1*x1 + 1) - 3) + x1*x1*(4*(t/(x1*x1 + 1))-6))*
(x1*x1 + 1) + 3*x1*x1*(t/(x1*x1 + 1)) + x1*x1*x1 + x1 +
3*((3*x1*x1 + 2*x2 -x1)/(x1*x1 + 1)))

} ensuring(res => res +/- 1e-12)

def turbine(v: Real, w: Real, r: Real): (Real, Real, Real) = {
require(-4.5 < v && v < -0.3 && 0.4 < w && w < 0.9 && 3.8 < r && r < 7.8)

val t1 = 3 + 2/(r*r) - 0.125*(3-2*v)*(w*w*r*r)/(1-v) - 4.5
val t2 = 6*v - 0.5 * v * (w*w*r*r) / (1-v) - 2.5
val t3 = 3 - 2/(r*r) - 0.125 * (1+2*v) * (w*w*r*r) / (1-v) - 0.5
(t1, t2, t3)

} ensuring (_ match {
case (r1, r2, r3) => r1 +/- 1e-12 && r2 +/- 1e-12 && r3 +/- 1e-12

})

Figure 5.5 – Benchmark functions from physics and control systems
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Figure 5.6 – Runtimes of benchmarks compiled for different precisions in nanoseconds (left)
vs. abs. error bounds computed for that precision by our tool (right).

For our benchmarks with their limited input ranges, 32 bit fixed-point implementations

provide better accuracy than single floating-point precision because single precision has

to accommodate a larger dynamic range which reduces the number of bits available for

the mantissa. That said, fixed-point implementations run slower, at least on the JVM, than

the more accurate double floating-point arithmetic with its dedicated hardware support.

However, the choice for fixed-point rather than floating-point may be also due to this hardware

being unavailable. Our tool can thus support a wide variety of applications with different

requirements. We also note that across the three (not specially selected) benchmarks, the

results are very consistent and we expect similar behavior for other applications as well.
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6 Computing Precise Range and Error
Bounds

This chapter presents our techniques that tackle one of the main challenges when analyzing

and verifying numerical code: nonlinear arithmetic. Since a direct translation of finite preci-

sion arithmetic into a real-valued constraint is not tractable at this point (see chapter 5), we

need to approximate both the ranges of variables and the round-off errors committed.

Being able to accurately compute a sound range of an expression is important by itself for

many applications, as many functions and algorithms work only within limited domains.

Range computations are also often building blocks for many (sound) algorithms. For example,

round-off errors depend directly on variable ranges, hence we need to be able to compute

them accurately. We will also use range computations extensively for the accurate computation

of propagation and discontinuity errors in this and the next chapter. We observe that affine

arithmetic alone often cannot provide satisfying results when faced with nonlinear arithmetic.

We show in the first part of this chapter how we combine nonlinear SMT solving with affine

arithmetic to obtain the needed tight bounds. This work is based on [47].

In the second part of this chapter, we propose a new error computation based on separating

the propagation of existing errors from the roundoff or truncation errors committed during

the computation. This separation allows us to distinguish the implementation aspects from

the mathematical properties of the underlying function and handle them individually with

appropriate techniques. In particular, this separation allows us to directly use the properties of

the real-valued functions underlying the finite-precision implementation. Such a separation

of errors applies fairly generally: it enabled us to i) improve computed error bounds on straight-

line nonlinear code (this chapter), ii) characterize errors in loops as functions of the number of

iterations (chapter 7), and iii) scale discontinuity error computations to multivariate functions

(chapter 7).

Using the separation of errors, our new propagation procedure improves the computed

error bounds compared to affine arithmetic. Our approach considers an entire arithmetic

expression at a time, computing an approximation of the global effect of the function on the

input errors, in contrast to the local linear approximation of affine arithmetic. Our procedure
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is backed by our new range computation, which allows us to capture nonlinear correlations

precisely. Moreover, it provides information about the sensitivity of the function with respect

to the errors, which is useful for understanding the behavior of the function and for modular

inter-procedural analysis. This work is currently under submission.

6.1 Range Bounds

The goal is to compute an accurate bound on the real-valued range of a nonlinear expression,

given ranges for its inputs. So far, we have performed range computation with interval or affine

arithmetic, and argued that most of the time the latter gives more accurate results since it takes

into account linear correlations. However, both arithmetics perform over- approximations

which become significant for nonlinear expressions, especially when the input intervals are

not small (radius > 1). In the case of nonlinear expressions the results computed by affine

arithmetic can actually become worse than for interval arithmetic. For example, x ∗ y with

x = [−5,3], y = [−3,1] gives [−13,15] in affine arithmetic and [−9,15] in interval arithmetic.

This over-approximation leads to less accurate bounds and round-off error estimates, but

becomes critical when division or square root operations are involved. For example, when

we try to analyze the jet engine controller [10] from Figure 5.5, interval and affine arithmetic

provide the bound [−∞,∞] on the output, since neither can bound the denominators in

the divisions away from zero. They fail to do this because of the nonlinearity and the high

correlation of the (only) two inputs x1 and x2.

Furthermore, we have seen in the triangle area example ( Figure 5.1) that additional constraints

beyond simple range bounds can be very useful. The precondition bounds the inputs as

a,b,c ∈ [1,9], but the formula is useful only for valid triangles, i.e. when every two sides

together are longer than the third. If not, we will get an error at the latest when we try to take

the square root of a negative number. Interval and affine arithmetic again fail to analyze this

example, since they cannot, without the valid-triangle constraints, bound the radicand away

from the negative range.

6.1.1 Range Computation

The input to our algorithm is a nonlinear real-valued expression expr and a precondition P

on its inputs, which specifies, among possibly other constraints, ranges on all input variables

x ∈Rn . The output is an interval [a,b] which satisfies the following:

[a,b] = getRange(P,expr) ⇒
∀x,res.P (x)∧ res= expr(x) → (a ≤ res∧ res≤ b)

Observation: A nonlinear theorem prover such as the one that comes with Z3 can decide with

fairly good accuracy whether a given bound is sound or not. That is, we can check with a prover

74



6.1. Range Bounds

whether for an expression e the range [a,b] is a sound interval enclosure. This observation is

the basis of our range computation.

The algorithm for computing the lower bound of a range is given in Figure 6.1. The computa-

tion for the upper bound is symmetric. For each range to be computed, our tool first computes

an initial sound estimate of the range with interval arithmetic. It then performs an initial quick

check to test whether the computed first approximation bounds are already tight. If not, it

uses the first approximation as the starting point and then narrows down the lower and upper

bounds using a binary search. At each step of the binary search our tool uses Z3 to confirm or

reject the newly proposed bound.

The search stops when either Z3 fails, i.e. returns unknown for a query or cannot answer

within a given timeout, the difference between subsequent bounds is smaller than an accuracy

threshold, or the maximum number of iterations is reached. This stopping criterion can be set

dynamically.

Additional constraints In addition to the input ranges, the precondition may also contain

further constraints on the variables, such as the valid-triangle constraints from Figure 5.1. In

interval-based approaches we can only consider input intervals that satisfy this constraint for

def getRange(expr, precondition, precision, maxIterations):
2 z3.assertConstraint(precondition)

[aInit, bInit] = evalInterval(expr, precondition.ranges);
4

//lower bound
6 if z3.checkSat(expr < a + precision) == UNSAT

a = aInit
8 b = bInit

numIterations = 0
10 while (b-a) < precision ∧ numIterations < maxIterations

mid = a + (b - a) / 2
12 numIterations++

z3.checkSat(expr < mid) match
14 case SAT ⇒ b = mid

case UNSAT ⇒ a = mid
16 case Unknown ⇒ break

aNew = a
18 else

aNew = aInit
20

//upper bound symmetrically
22 bNew = ...

return: [aNew, bNew]

Figure 6.1 – Algorithm for computing the range of an expression
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all values, and thus have to check several (and possibly many) cases. In our approach, since

we are using Z3 to check the soundness of bounds, we can assert the additional constraints

up-front and then all subsequent checks are performed with respect to all additional and

initial constraints. This allows us to avoid interval subdivisions due to inaccuracies or problem

specific constraints such as those in the triangle example. This becomes especially valuable in

the presence of multiple variables, where we may otherwise need an exponential number of

subdivisions.

A very similar approach has been developed independently in [94] in the context of bit-

width allocation for fixed-point arithmetic, using HySAT [63] as their back-end solver. We

also identify the potential and make use of additional constraints extensively, in fact, most

following techniques rely on them.

Choice of Solver We use the nlsat solver inside Z3 [92], which is based on conflict driven

clause learning (CDCL) together with a projection operator adapted from cylindrical algebraic

decomposition (CAD) [40]. It supports real closed fields together with division and is thus

suitable for our purpose, especially, since Z3 is available through the Leon framework inside

which Rosa is implemented. While Z3 supports ‘only’ real arithmetic and thus our approach

is limited to such code, it nonetheless covers a wide range of applications. Our algorithms

can be straight-forwardly extended to code including exponential or trigonometric functions,

provided a suitable solver is available.

iSAT3 [141] is a possible alternative solver, whose algorithm [64, 142] relies on a tight cou-

pling of interval constraint propagation (ICT) with CDCL. dReal [68] implements a decision

procedure based on delta-satisfiability [66] and also uses ICT, but inside a DPLL framework.

MetiTarski [7] applies simplifications and approximations to reduce more complex operations

to real closed fields and applies CAD on the resulting constraint. This list of possible solvers is

certainly not exhaustive and while they support many transcendental functions, they are also

necessarily incomplete. Any solver that can determine unsatisfiability of real-valued formulas

is suitable and it would be an interesting future project to see how well different solvers can

work in our algorithms.

6.1.2 Error Propagation

Since the error propagation as described in subsection 2.4.3 assumed essentially two affine

forms and we are replacing one of these by “Z3-powered” intervals, we need to adapt the

propagation as well. That is, we want to define the evalWithError procedure:

([a,b],er r ) = evalWithError(P,expr ) →
∀x, x̃,res, ˜res.P (x, x̃)∧ res= expr(x)∧ ˜res= ˜expr(x̃)

→ a ≤ res∧ res≤ b ∧|res− ˜res| < err
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where ˜expr represents the expression evaluated in finite-precision arithmetic and x, x̃ are

the ideal and actual variables. The precondition includes a specification of the ranges and

uncertainties of initial variables and other additional constraints on the ideal variables. Recall

that the uncertainty specification relates the ideal and actual variables.

The general idea is a before: we “execute” a computation while keeping track of the range of

the current intermediate expression and its associated errors. From this range, we can then

compute the round-off error committed at each computation step. Instead of using affine

arithmetic to compute the intermediate ranges, we use the Z3-backed range computation and

adapt the error propagation. In our adaptation, we represent every variable and intermediate

computation result as a data type with the following components:

x : (range : Interval, ˆerr : AffineForm)

where range is the real-valued range of this variable, computed with Z3 and ˆerr is the affine

form representing the errors. The (over-approximation) of the actual range including all

uncertainties is then given by totalRange = range + [ ˆerr], where [ ˆerr] denotes the interval

represented by the affine form. In this application, we use the rational implementation

of affine arithmetic. The modular nature of our static analyzer keeps the expressions to be

analyzed relatively short, making it possible to use rationals instead of double double precision

floating-points. We found the rational implementation both clearer and more accurate than a

floating-point one.

For the affine operations addition, subtraction, and multiplication by a constant factor the

propagated errors are computed term-wise and thus in the same way as for standard affine

arithmetic. For multiplication, division and square root, propagation has to be adjusted, since

our ranges are not affine terms themselves. In the following, we denote the range of a variable

x by [x] and its associated error by the affine form ˆerrx. When we write [x]∗ ˆerry we mean that

the interval [x] is converted into an affine form and the multiplication is performed in affine

arithmetic. Multiplication is computed as

x ∗ y = ([x]+ ˆerrx)([y]+ ˆerry)

= [x]∗ [y]+ [x]∗ ˆerry + [y]∗ ˆerrx + ˆerrx ∗ ˆerry +ρ

where ρ is the new round-off error, computed as usual. Thus the first term contributes to the

ideal range and the remaining three to the error affine form. The larger the factors [x] and [y]

are, the larger the finally computed errors will be. In order to keep the over-approximation

as small as possible, we evaluate [x] and [y] with our new range computation. Division is

computed as

x

y
= x ∗ 1

y
= ([x]+ ˆerrx)([1/y]+ ˆerr1/y )

= [x]∗ [
1

y
]+ [x]∗ ˆerr 1

y
+ [

1

y
]∗ ˆerrx + ˆerrx ∗ ˆerr 1

y
+ρ
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For square root, we first compute an error multiplier based on the affine approximation of

square root: (
p

z)′ = 1
2
p

z↓ where z = mi n(|a|, |b|) with [a,b] being the input interval and ↓
denotes rounding towards −∞. The propagated error is obtained by multiplying the error ˆerrx

by this factor term-wise.

Overflows and NaN Our procedure allows us to detect potential overflows, division by zero

and square root of a negative value errors, as our tool computes ranges of all intermediate

values. We currently report these issues as compilation errors to the user.

6.1.3 Limitations

The limitation of this approach is clearly the ability of Z3 to check our constraints. We found

its capabilities satisfactory, although we expect the performance to still significantly improve.

To emphasize the difference to the constraints that are defined by Table 5.1, the real-valued

constraints we use here for narrowing down ranges do not include roundoff errors. Since each

roundoff introduced one variable for each arithmetic operation, we reduce the number of

variables significantly when only considering the real-valued computation. We also found

several transformations helpful, such as rewriting powers (e.g. x ∗x ∗x to x3), multiplying out

products and avoiding non-strict comparisons in the precondition, although the benefits are

not entirely consistent. Note that at each step of our error computation, our tool computes

the current range. Thus, even if Z3 fails to tighten the bound for some expressions, we still

compute more accurate bounds than interval arithmetic overall in most cases, as the ranges

of the remaining subexpressions have already been computed more accurately.

6.1.4 Experimental Results

We have chosen several nonlinear expressions commonly used in physics, biology and chem-

istry [151, 133, 122] as benchmark functions, as well as benchmarks used in control systems [9]

and suitable benchmarks from [56]. Experiments were performed on a desktop computer

running Ubuntu 12.04.1 with a 3.5GHz i7 processor and 16GB of RAM. Table 6.1 compares

results of our range computation procedure against ranges obtained with standard interval

arithmetic. We found affine arithmetic to give more pessimistic results on these benchmarks

in our experiments. We believe that this is due to inaccuracies in computing nonlinear opera-

tions. Note, however, that we still use affine arithmetic to estimate errors given the computed

ranges.

For our range computation, we set the default accuracy threshold to 1e-10 and maximum

number of iterations for the binary search to 50. To obtain an idea about the true ranges

of our functions, we have also computed a lower bound on the range using simulations

with 107 random inputs and with exact rational arithmetic evaluation of expressions. We

observe that our range computation can significantly improve over standard interval bounds.
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Benchmark Our range Interval arithmetic Simulated range

doppler1 [-137.639, -0.033951] [-158.720, -0.029442] [-136.346, -0.035273]

doppler2 [-230.991, -0.022729] [-276.077, -0.019017] [-227.841,-0.023235]

doppler3 [-83.066, -0.50744] [-96.295, -0.43773] [-82.624, -0.51570]

rigidBody1 [-705.0, 705.0] [-705.0, 705.0] [-697.132, 694.508]

rigidBody2 [-56010.1, 58740.0] [-58740.0, 58740.0] [-54997.635, 57938.052]

jetEngine [-1997.037, 5109.338] [−∞,∞] [-1779.551, 4813.564]

turbine1 [-18.526, -1.9916] [-58.330, -1.5505] [-18.284, -1.9946]

turbine2 [-28.555, 3.8223] [-29.437, 80.993] [-28.528, 3.8107]

turbine3 [0.57172, 11.428] [0.46610, 40.376] [0.61170, 11.380]

verhulst [0.31489, 1.1009] [0.31489, 1.1009] [0.36685,0.94492]

predatorPrey [0.039677, 0.33550] [0.037277, 0.35711] [0.039669,0.33558]

carbonGas [4.3032 e6, 1.6740 e7] [2.0974 e6, 3.4344 e7] [4.1508 e6, 1.69074 e7]

Sine [-0.9999, 0.9999] [-2.3012, 2.3012] [-0.9999, 0.9999]

Sqrt [1.0, 1.3985] [0.83593, 1.5625] [1.0, 1.3985]

Sine (order 3) [-1.0001, 1.0001] [-2.9420, 2.9420] [-1.0, 1.0]

Table 6.1 – Comparison of ranges computed with out procedure against interval arithmetic
and simulation. Simulations were performed with 107 random inputs. Ranges are rounded
outwards. Affine arithmetic does not provide better results than interval arithmetic.

The jetEngine benchmark is a notable example, where interval arithmetic yields the bound

[−∞,∞], but our procedure can still provide bounds that are quite close to the simulated

range.

Triangle Progression Table 6.2 presents another relevant experiment, evaluating the ability

to use additional constraints during our range computation. For this experiment, we use

double precision and the triangle example from Figure 5.1 with additional constraints allowing

increasingly flat triangles by setting the threshold (e.g. a + b > c + 1e-6) to the different

values given in the first column. As the triangles become flatter, we observe an expected

increase in uncertainty on the output since the formula becomes more prone to round-off

errors. At threshold 1e-10 our range computation fails to provide the necessary accuracy and

the radicand becomes possibly negative. Using our tool, the developer can go beyond rules

of thumb and informal estimates and be confident that the computed area is accurate up to

seven decimal digits even for triangles that whose difference a +b − c is as small as 10−9.
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Benchmark Area Max. abs. error

triangle1 (0.1) [0.29432, 35.0741] 2.019e-11

triangle2 (1e-2) [0.099375, 35.0741] 6.025e-11

triangle3 (1e-3) [3.16031e-2, 35.0741] 1.895e-10

triangle4 (1e-4) [9.9993e-3, 35.0741] 5.987e-10

triangle5 (1e-5) [3.1622e-3, 35.0741] 1.894e-9

triangle6 (1e-6) [9.9988e-4, 35.0741] 5.988e-9

triangle7 (1e-7) [3.1567e-4, 35.0741] 1.897e-8

triangle8 (1e-8) [9.8888e-5, 35.0741] 6.054e-8

triangle9 (1e-9) [3.0517e-5, 35.0741] 1.962e-7

triangle10 (1e-10) - -

Table 6.2 – Area computed and error on the result for increasingly flat triangles. All values are
rounded outwards. Interval or affine arithmetic alone fails to provide any result.

6.2 Error Bounds

Now that we have reasonably accurate ranges, we address error propagation in straight-line

nonlinear functions, without loops and branches. The input is a real-valued arithmetic expres-

sion representing a function f :Rn →R over some inputs xi ∈R, absolute error bounds on the

inputsλi and a target precision. The arithmetic operators our tool accepts are {+,−,∗,/,
p

}. We

denote by f and x the exact ideal real-valued function and variables and by f̃ :Rn →R, x̃ ∈Rn

their actual finite-precision counter-parts. Note that for our analysis all variables are real-

valued; the finite-precision variable x̃ is considered as a noisy versions of x. |x − x̃| ≤λ then

defines the input errors, where the absolute value is taken component-wise. We want to bound

the absolute error on the result of evaluating f (x) in finite precision arithmetic:

| f (x)− f̃ (x̃)| where |x − x̃| ≤λ

6.2.1 Separation of Errors

Approaches based on interval or affine arithmetic treat all errors equally in the sense that

initial errors are propagated in the same way as round-off errors which are committed during

the computation. We propose to separate these errors as follows:

| f (x)− f̃ (x̃)| = | f (x)− f (x̃)+ f (x̃)− f̃ (x̃)|
≤ | f (x)− f (x̃)|+ | f (x̃)− f̃ (x̃)|

(6.1)

The first term captures the error in the result of f caused by the initial error between x and x̃.

The second term covers the round-off error committed when evaluating f in finite-precision,
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but note that we compute this round-off error from a accurate input without initial error. Thus,

we separate the overall error into the propagation of existing errors, and the newly committed

round-off errors. Figure 6.2 illustrates this separation.

We denote by σ f : Rn → R the function which returns the round-off error committed when

evaluating an expression in finite-precision arithmetic: σ f (x̃) = | f (x̃)− f̃ (x̃)|. We omit the

subscript f , when it is clear from the context. We use the round-off error computation

from section 6.1. Further, g : Rn → R denotes a function which bounds the difference in f ,

given a difference in its inputs: | f (x)− f (y)| ≤ g (|x − y |). When f is multivariate, the absolute

value is component-wise, i.e. g (|x1 − y1|, . . . , |xn − yn |), but when it is clear from the context,

we will write g (|x − y |) for clarity. Thus, the overall numerical error is given by:

| f (x)− f̃ (x̃)| ≤ g (|x − x̃|)+σ(x̃) (6.2)

This procedure extends naturally to vector-valued functions, where we compute errors

component-wise:

| fi (x)− f̃i (x̃)| ≤ gi (|x − y |)+σi (x̃) where g ,σ f :Rn →Rn .

Note that the separation in Equation 6.1 is not unique. For instance, we could have chosen

| f (x)− f̃ (x)|+| f̃ (x)− f̃ (x̃)|. The first term now corresponds to round-off errors, but the second

requires bounding the difference of f̃ over a certain input interval. In the separation that

we have chosen, we need to compute the difference over the real-valued f , which is a much

simpler function than its finite-precision counterpart.

x x~

f

~f

f(x)
roundoff

propagation

~~

f(x)

f(x)

~

Figure 6.2 – Illustration of the separation of errors
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6.2.2 Computing Propagation Coefficients

We instantiate Equation 6.2 with g (x) = K · x and bound the deviation on the result by a linear

function in the input errors:

| f (x)− f (y)| ≤ K |x − y |

We will use this definition for most of the rest of this paper. The constant K is to be determined

for each function individually, and is usually called the Lipschitz constant. We will also use the

in this context more descriptive name propagation coefficient. Note that we need to compute

the propagation coefficient K for the mathematical function f and not its finite-precision

counterpart f̃ .

At a high level, error amplification or diminution depends on the derivative of the function

at the inputs. The steeper the function, i.e. the larger the derivative, the more the errors

are magnified. We formally derive the computation of the propagation coefficients Ki for a

multivariate function f in the following.

Let h : [0,1] → R such that h(θ) := f (y +θ(z − y)). Without loss of generality, assume y < z.

Then h(0) = f (y) and h(1) = f (z) and

d

dθ
h(θ) =∇ f (y +θ(z − y)) · (z − y)

By the mean value theorem:

f (z)− f (y) = h(1)−h(0) = h′(ζ) where ζ ∈ [0,1]

Then taking absolute values on both sides:

| f (z)− f (y)| = |h′(ζ)|
= |∇ f (y +ζ(z − y)) · (z − y)|

=
∣∣∣∣( ∂ f

∂x1

∣∣∣∣
w

, . . . ,
∂ f

∂xn

∣∣∣∣
w

)
· (z − y)

∣∣∣∣ , w = y +ζ(z − y)

=
∣∣∣∣ ∂ f

∂x1
· (z1 − y1)+·· ·+ ∂ f

∂xn
· (zn − yn)

∣∣∣∣
≤

∣∣∣∣ ∂ f

∂x1

∣∣∣∣ · ∣∣z1 − y1
∣∣+·· ·+

∣∣∣∣ ∂ f

∂xn

∣∣∣∣ · |zn − yn | (**)

where the partial derivatives are evaluated at w = y +ζ(z − y), which we omit for readability.

We compute the partial derivatives symbolically, but before we can evaluate the propagation

error, we need to determine over which inputs we need to evaluate them.
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Bounding Ranges of Partial Derivatives In the above, the value of w is constraint to be

in w ∈ [y, z], so for a sound analysis we have to determine the maximum absolute value of

the partial derivative over [y, z]. y and z in our application range over the values of x and x̃

respectively, so we compute the maximum absolute value of ∂ f
∂xi

over the interval that contains

the intervals of x and x̃. Both interval and affine arithmetic suffer from possibly large over-

approximations, which is why we use the range computation from section 6.1 to bound the

ranges of the derivatives. Finally, we have |yi − zi | ≤λi and we obtain

| f (x)− f (x̃)| ≤
n∑

i=1
Kiλi (6.3)

where Ki = supx,x̃

∣∣∣ ∂ f
∂xi

∣∣∣. We show an example of this computation in subsection 6.2.3.

Additional Constraints The propagation coefficients are computed using the input ranges.

As we have already seen, we can often restrict the inputs further by additional constraints.

Since we are using an SMT solver to bound the ranges of the partial derivatives, these addi-

tional constraints can naturally be taken into account to compute more accurate propagation

coefficients.

Sensitivity to Input Errors Beyond providing a way to compute the propagated initial errors,

Equation 6.3 also makes the sensitivity of the function to input errors explicit, at least to a

linear approximation. That is, we can read off from Equation 6.3 by how much initial errors get

magnified or diminished by the computation. The user can use this knowledge, for example,

to determine which inputs need to be determined more accurately, e.g. by more accurate

measurements. We report the values of K back to the user.

6.2.3 Relationship with Affine Arithmetic

Both our presented propagation procedure and propagation using affine arithmetic perform

approximations. The question arises then, when is it preferable to use one over the other?

Section 6.2.5 and our experience show empirically that for longer nonlinear computations,

error propagation based on Lipschitz continuity gives better results, whereas for shorter

and linear computations this is not the case. In this section, we present an analysis of this

phenomenon based on an example.

Suppose we want to compute x ∗ y − x2. For this discussion we consider propagation only

and disregard round-off errors. We consider the case where x and y have an initial error of

δxε1 and δyε2 respectively, where εi ∈ [−1,1] are the formal noise symbols of AA. Without loss

of generality, we assume δx ,δy ≥ 0. We first derive the expression for the error with affine

arithmetic and take the definition of multiplication from subsection 6.1.2. We denote by [x]

the evaluation of the real-valued range of the variable x.
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The total range of x is then the real-valued range plus the error: [x]+δxε1, where ε1 ∈ [−1,1].

Multiplying out, and removing the [x][y]− [x]2 term (since it is no error term), we obtain the

expression for the error of x ∗ y −x2:(
[y]δxε1 + [x]δyε2 +δxδyε3

)− (2[x]δxε1 +δxδxε4)

= ([y]−2[x])δxε1 + [x]δyε2 +δxδyε3 +δxδxε4
(6.4)

ε3 and ε4 are fresh noise symbols introduced by the nonlinear approximation. Now we com-

pute the propagation coefficients:

∂ f

∂x
= y −2x

∂ f

∂y
= x

The error is then given by∣∣∣[y +δyε2 −2(x +δxε1)]
∣∣∣δx +

∣∣∣[x +δxε1]
∣∣∣δy (6.5)

We obtain this expression by instantiating Equation (**) with the range expressions of x and y .

Note that the ranges used as the inputs for the evaluation of the partial derivatives include the

errors. Multiplying out Equation 6.5 we obtain:∣∣∣[y −2x]
∣∣∣δx +

∣∣∣[x]
∣∣∣δx +δxδy +δxδx +δxδx (6.6)

With affine arithmetic we compute ranges for propagation at each computation step, i.e.

in Equation 6.4 we compute [x] and [y] separately. In contrast, with our new technique, the

range is computed once, taking all correlations into account between the variables x and y .

It is these correlations that improve the computed error bounds. For instance, if we choose

x ∈ [1,5] and y ∈ [−1,2] and we know that x < y , then by a step-wise computation we obtain

[y]−2[x] = [−1,2]−2[1,5] = [−11,0] whereas taking the correlations into account, we can

narrow down the range of x to [1,2] and obtain [y −2x] = [−1,2]−2[1,2] = [−5,0]. Hence, since

we compute the maximum absolute value of these ranges for the error computation, AA will

use the factor 11, whereas our approach will use 5.

On the other hand, comparing Equation 6.6 with Equation 6.4, we see that one term δxδx is

included twice with our approach, whereas in the affine propagation it is only included once.

We conclude that a Lipschitz-based error propagation is most useful for longer computations

where it can leverage correlations. In other cases we keep the existing affine arithmetic-

based technique. It does not require a two-step computation, so we want to use it for smaller

expressions. We remark that for linear operations the two approaches are equivalent.

6.2.4 Higher Order Taylor Approximation

In subsection 6.2.2 we presented one possible instantiation of the error propagation function

g . The resulting propagation function is a function in the input errors. The errors do, however,
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also depend on the ranges of the inputs. This fact is only implicitly reflected in the computed

coefficients via the ranges used for bounding the partial derivatives. We can in fact make this

relationship more explicit. Recall Taylor’s Theorem in several variables:

Taylor’s Theorem Suppose f :Rn →R is of class C k+1 on an open convex set S. If a ∈ S and

a +h ∈ S, then

f (a +h) = ∑
|α|≤k

∂α f (a)

α!
hα+Rα,k (h)

where the remainder in Lagrange’s form is given by:

Rα,k (h) = ∑
|α|=k+1

∂α f (a + ch)

α!
hα

for some c ∈ (0,1). �

Computing the Taylor expansion of f (x̃) to first order in our setting:

f (x̃) = f (x)+
n∑

j=1
∂ j f (x)h j + 1

2

n∑
j ,k=1

∂ j∂k f (w)h j hk

and taking absolute values, we obtain

∣∣ f (x̃)− f (x)
∣∣≤ ∣∣∣∣∣ n∑

j=1
∂ j f (x)h j

∣∣∣∣∣+ 1

2

∣∣∣∣∣ n∑
j ,k=1

H j k (w)h j hk

∣∣∣∣∣
where w is in the interval containing x and x̃, and H is the Hessian matrix of f . If we consider

the expansion for k = 1, we obtain an expression for computing the upper bound on the

propagated error which is also a function of the input values.

We observe that the second order taylor remainder is in general small, due to the fact that we

take the square of the initial errors, which we assume to be small in our applications. We can

bound the remainder with the same technique we use to compute the propagation coefficients.

Then, together with the partial derivatives of f , we obtain error specifications which can be

used for a more accurate modular verification process.

Application to Interprocedural Analysis Having more accurate specifications enables us to

re-use methods across different call-sites, with possibly different constraints on the arguments.

We present an example in subsection 6.2.5 which demonstrates the effectiveness of this

summarization technique. We are not aware of other work that is capable of computing such

summaries for numerical errors. [74] presents an approach to compute method summaries

based on affine arithmetic evaluation and instantiation. These summaries, however, capture

the real-valued ranges only and not the numerical errors.
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6.2.5 Experimental Results

We perform our experiments mostly with double precision unless otherwise specified, as

this is a common choice for numerical programs. Note however, that Rosa supports both

floating-point arithmetic with different precisions, as well as fixed-point arithmetic with

different bitlengths. In our experience, while the absolute errors naturally change with varying

precisions and data types, the relative differences in comparisons remain very similar.

We compare our results against those obtained by Fluctuat, which is the only other tool that

we are aware of that can compute sound numerical error bounds. We further compare two

versions of Rosa: one where the round-off error computation is based on only affine arithmetic

with accurate ranges, as described in section 6.2, and the other where we use our Lipschitz-

based error computation. We will call the latter version Rosa+. Unless otherwise stated, all

numerical error values are rounded. Experiments were performed on a desktop computer

running Ubuntu 12.04.4 with a 3.5GHz i7 processor and 16GB of RAM.

Straight-line Nonlinear Computation

We first evaluate our error propagation technique for straight-line nonlinear code on our

benchmarks from section 6.1. The results are summarized in Table 6.3. The error computations

in Rosa and in Fluctuat are very similar, and essentially differ only in how the ranges of variables

are constrained. We use an SMT solver to narrow down ranges, whereas Fluctuat uses a logical

product of the affine forms with an abstract domain [70]. We also list an under-approximation

of the errors, which we obtained with a simulation with 107 random inputs. We are not aware

of such a thorough comparison having been performed before.

The initial errors in the top benchmarks of Table 6.3 are round-off errors only, in the bottom

section we add an initial absolute error of 1e −11 to all inputs. We can see that Rosa+ can

improve the computed error estimates in most cases. Even for benchmarks where the initial

errors are only round-offs, we can still sometimes halve the error obtained with previous tools.

For benchmarks with additional initial errors the effect is even larger.

Furthermore, we investigate the effect of refactoring expressions and applying our error prop-

agation technique to each subexpression. For example, in the case of the doppler benchmark,

we consider two formulations:

(- (331.4 + 0.6 * T) *v) / (((331.4 + 0.6 * T) + u)*((331.4 + 0.6 * T) + u))

which is often the formulation produced by code generation tools, and

val tmp = 331.4 + 0.6 * T

(-tmp * v) / ((tmp + u)*(tmp + u))

In the second case, we apply the error propagation twice, once for computing the error

on tmp and once for the error on the result. The hope is to compute intermediate values
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benchmark Simulated Fluctuat Rosa Rosa+

doppler
7.11e-14

3.90e-13 4.36e-13 4.29e-13

dopplerRefactored 3.90e-13 4.19e-13 2.68e-13

jetengine
5.46e-12

4.08e-8 1.16e-8 5.33e-9

jetengineRefactored 4.08e-8 1.16e-8 4.91e-9

rigidBody1 2.28e-13 3.22e-13 3.22e-13 3.22e-13

rigidBody2
2.19e-11

3.65e-11 3.65e-11 3.65e-11

rigidBody2Refactored 3.65e-11 3.65e-11 3.65e-11

sine 4.45e-16 7.97e-16 6.40e-16 5.18e-16

sineOrder3 3.34e-16 1.15e-15 1.23e-15 9.96e-16

sqroot 4.45e-16 3.21e-13 3.09e-13 2.87e-13

turbine1
1.07e-14

9.20e-14 8.87e-14 5.99e-14

turbine1Refactored 9.26e-14 8.87e-14 5.15e-14

turbine2
1.43e-14

1.29e-13 1.23e-13 7.67e-14

turbine2Refactored 1.34e-13 1.23e-13 6.30e-14

turbine3
5.33e-15

6.99e-14 6.27e-14 4.62e-14

turbine3Refactored 7.03e-14 6.27e-14 4.01e-14

verhulst 2.23e-16 4.24e-16 4.74e-16 4.67e-16

predatorPrey 1.12e-16 2.09e-16 2.08e-16 1.98e-16

carbonGas 3.73e-9 4.02e-8 3.35e-8 1.60e-8

with added errors

dopplerRefactored 1.65e-11 5.45e-11 5.29e-11 2.08e-11

jetengineRefactored 3.64e-8 4.67e-4 1.41e-4 3.36e-7

turbine1Refactored 4.09e-10 1.82e-9 1.88e-9 4.60e-10

turbine2Refactored 5.10e-10 2.82e-9 2.90e-9 5.86e-10

turbine3Refactored 2.10e-10 1.24e-9 1.27e-9 3.32e-10

Table 6.3 – Comparison of computed absolute errors from Fluctuat, and our two error compu-
tations in Rosa on straight-line, nonlinear benchmarks. Simulations were performed with 107

random inputs. We mark the best result per benchmark in bold.

more accurately with our technique and thus improve the overall bounds even further. The

experimental results confirm the benefit of this step-wise error computation. Rosa+ currently

performs the error propagation only for expressions defined as vals or final expressions, as too

fine-grained steps would increase the running time unnecessarily or degrade the computed

results.
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Overall, we remark that many of the soundly computed errors actually come quite close to the

true errors, as indicated by the simulation results. We thus believe that our technique and our

accuracy is very well suitable for the analysis of numerical computation kernels.

Sensitivity The propagation coefficients provide information about the sensitivity of a func-

tion to input errors. For example, for the non-refactored doppler benchmark, the computed

coefficients for u, v, T are

3.216238, 0.006881929, 0.7557531

respectively. Thus, absolute input errors on u get magnified by approximately 3.22 in the worst

case, whereas input errors on v have a much more favorable factor of below one. This infor-

mation can, for instance, be used to direct optimization efforts, and we report the computed

propagation coefficients in comments in the generated code.

Running times

Table 6.4 compares the running times of Rosa and Rosa+ for selected benchmarks. Fluctuat in

general computed the result within one second, since it is not using an SMT solver internally.

We have not specifically optimized our implementation, and improvements are certainly

possible. Nevertheless, while our two-step computation clearly increases the runtime, we

believe that the times do remain acceptable for a static verification approach.

First-order Method Summaries Section 6.2.4 introduced a possible extension of the propa-

gation coefficients to postconditions where the errors are functions of both the initial errors

and the ranges of the corresponding variable. Here we give a possible scenario how these

‘Taylor summaries’ can be used. Recall that Rosa’s verification framework is modular in that

each method is verified separately, and method postconditions are used, where possible, at

call sites. The specifications have to be general however, to allow a method to be used in many

instances, yet accurate enough to facilitate a successful verification.

For example, consider the following seventh order approximation to the sine function, as it

may be used in an embedded system, where trigonometric functions are often approximated.

def sine(x: Real): Real = {

require(-3.5 < x && x < 3.5 && x +/- 1e-8)

x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0 -

(x*x*x*x*x*x*x)/5040.0

} ensuring(res => -1.0 < ~res && ~res < 1.0 && res +/- 2e-7)
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Runtime Fluctuat Rosa Rosa+

doppler

< 1

5 23

dopplerRefactored 5 19

jetEngine 120 454

jetEngineRefactored 118 400

rigidBody1 0.1 0.2

rigidBody2 6 8

rigidBody2Refactored 6 7

sine 3 4

sineOrder3 0 1

sqroot 1 2

turbine1 1 18

turbine1Refactored 1 2

turbine2 1 6

turbine2Refactored 1 2

turbine3 1 19

turbine3Refactored 1 5

verhulst 4 10

predatorPrey 1 24

carbonGas 4 26

Table 6.4 – Running times of our approach compared with Rosa (in seconds)

The postcondition is successfully verified for the given range and input error. But what if, at a

call site, the range or the initial error is smaller? Consider two calls to sine

require(-0.5 <= y && y <= 0.5 && y +/- 1e-8)

...

sineTaylor(y)

require(-3.0 <= z && z <= 1)

...

sineTaylor(z)

With Rosa, one can either use the postcondition with given error on the result of 2e-7, or inline

the function and essentially re-do the error computation. In contrast, our approach described

in subsection 6.2.4 will instead use the computed summaries and determine the error for

the first case to be 1.000e-8 and for the second case 4.945e-15, improving the error bounds by

more than 6 decimal orders of magnitude. This illustrates the benefits of relational summaries

that our approach computes.
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Conclusion

In this chapter we have presented techniques for an accurate static analysis of numerical errors

and ranges. They crucially rely on the use of a nonlinear SMT solver to incorporate correlations

between variables from the computation and from additional (external) constraints in the

computation of ranges. Furthermore, we show that a separation of errors strategy opens

up possibilities for more specialized techniques that can compute tighter error estimates.

Effectively, our error propagation computation can employ analytical information about the

real-valued mathematical function and improve the error bounds substantially. We believe

that our experimental results show that this effort is worth spent.
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7 Handling Control Structures

Until now, we have considered numerical error estimation for straight-line code without

branches and loops, which we cover in this chapter. The material in this chapter is based

on [47] and subsequent extensions [46].

7.1 Discontinuity Errors

By discontinuity error we mean the difference between the ideal and actual computation due

to uncertainties on computing branch conditions and the resulting different paths taken. So

unlike the runtime solution presented in subsection 3.1.1, which merely detects that control

flow may diverge, here we are interested in a more rigorous treatment in the sense that we

want to quantify the resulting difference between the real-valued and the finite-precision

computation. Quantifying discontinuity errors is hard due to many correlations between

variables of the two branches, but also due to nonlinearity.

Embedded systems often use piece-wise approximations of more complex functions. In Fig-

ure 7.1 we show a possible piece-wise polynomial approximation of the jet engine controller

from Figure 5.5. We obtained this approximation by fitting a polynomial to a sample of values

of the original function. For many applications it is crucial that the error introduced by the

discontinuity remains small, since we may otherwise risk unstable behavior. The real-valued

difference between the two branches is at most 0.21021. However this is not a sound estimate

for the discontinuity error in the presence of round-off and initial errors. With our tool, we can

confirm that the discontinuity error is bounded by 0.21202, with all errors taken into account.

We note that the direct encoding of the computation constructed according to Section 5.2.1

automatically includes discontinuity errors. Recall that we encode the ideal and actual com-

putations such that they are independent except for the initial conditions. Because of this

independence it is possible that they follow different paths through the program. When we

cannot encode the actual computation and approximate it instead, we compute the error on

individual paths and have to consider the error due to diverging paths separately.
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def jetApproxGoodFit(x: Real, y: Real): Real = {
require(-5 <= x && x <= 5 && -5 <= y && y <= 5 &&
x +/- 1e-11 && y +/- 1e-11)

if (y < x)
-0.367351 + 0.0947427*x + 0.0917402*x*x - 0.00298772*y +
0.0425403*x*y + 0.00204213*y*y

else
-0.308522 + 0.0796111*x + 0.162905*x*x + 0.00469104*y -
0.0199035*x*y - 0.00204213*y*y

}

Figure 7.1 – Piece-wise approximation of the jet engine controller

We propose two algorithms to explicitly compute the difference between the ideal and the

actual computation across paths. Neither method assumes continuity or any other specific

property of the function, i.e. the algorithm allows us to compute error bounds even in the case

of non-smooth or non-continuous functions. For simplicity, we present here the algorithms

for the case of one conditional statement:

if (c(x)<0) f1(x) else f2(x)

They generalize readily to more complex expressions by rewriting the branches into this form.

Using our previous notation, let f1 and f2 be the real- valued functions corresponding to the

if and the else branch respectively. Then, the discontinuity error is given by | f1(x)− f̃2(x̃)|
That is, the real computation takes branch f1, and the finite-precision one f2. The opposite

case is analogous:

def getDiscontinuityError:

2 Input: pre: (x ∈ [a,b]∧x ±n)

program: (if (cond(x) < 0) f1(x) else f2(x))

4

val discError1 = computeDiscError(pre, cond, f1, f2)

6 val discError2 = computeDiscError(pre, ¬ cond, f2, f1)

return max (discError1, discError2)

7.1.1 Precise Constraint Solving

Formulating it as a separation of errors, our technique computes the following:

| f1(x)− f̃2(x̃)| ≤ | f1(x)− f2(x̃)|+ | f2(x̃)− f̃2(x̃)|

In order to obtain a useful result, our first technique constructs an accurate constraint relating

the variables from f1 to the variables in f2 while computing the first difference. The second

part is then simply the round-off error from evaluating f2 in finite precision.
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1 def computeDiscError(pre, c, f1, f2):
([c], errc) = evalWithError(pre, c)

3

varConstraint = c(x1) ∈ [−errc, 0] ∧
5 c(x2) ∈ [0, errc] ∧

relate(x1, x2, er rc)
7

[diff] = getRange(pre ∧ varConstraint, f1(x1) - f2(x2) )
9

([f2]float, errfloat) = evalWithError(pre ∧ c(x2) ∈ [0, errc], f2)
11

return: max | [diff] | + errfloat

Figure 7.2 – Computation of errors due to diverging paths. Quantities denotes by [x] are
intervals.

W.l.o.g. we assume that the condition is of the form c(x) < 0. Indeed, any conditional of the

form c(x) == 0 would yield different results for the ideal and actual computation for nearly

any input, so we do not allow it in our specification language.

The actual finite-precision computation commits a certain error when computing the con-

dition of the branch and it is this error that causes some executions to follow a different

branch than the corresponding ideal one would take. Figure 7.2 presents our first algorithm

to compute the discontinuity error. The idea is to consider the computation along f1 and f2

as separate computations with independent variables x1 and x2, which are related for the

computation of the difference f1 − f2 to be at most errc apart. Additionally, x1 and x2 are

restricted such that c(x1,2) ∈ [−errc ,errc ], that is, we compute the difference only for the values

for which the computation could be diverging. We compute the difference as an interval, since

the inputs x1 and x2 are also interval valued. The overall error is then the real-valued difference

plus the round-off error committed by f2. The algorithm extends naturally to several variables.

In the case of several paths through the program, this error has to be, in principle, computed

for each pair of paths. We use Z3 to rule out infeasible paths up front so that the path error

computation is only performed for those paths that are actually feasible. Rosa implements

this algorithm while merging paths at every branch. It also uses a higher default accuracy

and number of iterations threshold during the binary search in the range computation as this

computation requires in general very tight intervals as the errors can be small.

We identify two challenges for performing this computation:

1. As soon as the program has multiple variables, the inputs for the different branches are

not two-dimensional intervals anymore, which makes an accurate evaluation of the

difference difficult.
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2. The inputs for the two branches are inter-dependent. Simply evaluating the two

branches with inputs that are in the correct ranges, but are not correlated, yields pes-

simistic results when computing the difference (line 6).

We overcome the first challenge with our range computation which takes into account ad-

ditional constraints. For the second challenge, we use our range computation as well. Un-

fortunately, Z3 fails to tighten the final range to a satisfactory accuracy due to timeouts for

more complex examples, especially with several variables. We still obtain much better error

estimates than with interval arithmetic alone, as the ranges of values for the individual paths

are already computed much more accurately.

Fluctuat also includes a procedure to evaluate discontinuity errors and takes a similar route. It

does not use an SMT solver, but it constrains the noise terms of the real and floating-point

computation in its abstract domain based on a logical product with the interval domain [73].

We will show later in the experimental results that this approach does not yield satisfactory

results either. Furthermore, the underlying domain is linear, hence nonlinearity in f1 and f2

cause further over-approximations.

7.1.2 Trading Accuracy for Scalability

While our first approach is accurate for unary functions and when they are not too complex,

the accurate constraint which correlates x1 and x2 becomes quickly too complex. We trade

some of the accuracy that this constraint provides for scalability, by taking the separation of

errors idea further. We now separate the error in three parts:

| f1(x)− f̃2(x̃)|
≤ | f1(x)− f1(x̃)|+ | f1(x̃)− f2(x̃)|+ | f2(x̃)− f̃2(x̃)|

(7.1)

Figure 7.3 illustrates this separation. The individual components are

i) | f1(x)− f1(x̃)|: the difference in f1 due to initial errors. We can compute this difference

with our previously defined propagation coefficients: | f1(x)− f1(x̃)| ≤ K |x − x̃|.

ii) | f1(x̃)− f2(x̃)|: the real-valued difference between f1 and f2. We can bound this value by

our range computation.

iii) | f2(x̃)− f̃2(x̃)|: the round-off error when evaluating f2 in finite-precision arithmetic. We

use the same procedure as in chapter 6.

We expect the individual parts to be easier to handle for the underlying SMT-solver, since we

reduce the number of variables and correlations. Fluctuat and our first technique compute the

discontinuity error as one difference between the computations on the two paths of a branch.

In contrast, here we split the error and compute its parts separately, obtaining a more scalable
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f1
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Figure 7.3 – Illustration of error computation for conditional branches

procedure. On the other hand, we clearly introduce an additional over-approximation, but

we will show in our experiments that this is in general small, even for benchmarks where the

accurate approach from the previous section performs well. For more complex benchmarks

our tool outperforms the more accurate approach by far.

We perform our analysis pairwise for each pair of paths in the program. While this gives in the

worst-case an exponential number of cases to consider, we found that many of these cases are

infeasible due to inconsistent branch conditions and can be eliminated early. Note also, that

because we treat loops analytically as opposed to by unrolling, we do not encounter many

nested conditionals in practice. Our tool accepts any branch condition that is of the form

e1 ;◦; e2, where e1 and e2 are arithmetic expressions and ◦ ∈ {<,≤,>,≥}.

Determining ‘Critical Inputs’

As in the previous section, it is crucial to determine the ranges of x, x̃ over which to evaluate

the individual parts of Equation 7.1. Recall that for the analysis, x and x̃ are real-valued. A

sound approach would be to use the same bounds as for the straight-line case, but this would

lead to unnecessary over-approximations. In general, not all inputs can exhibit a divergence

between the real-valued and the finite-precision computation. We call those which possibly

do the ‘critical inputs’. They are determined by the branch conditions and the errors on the

variables. Consider the branch condition if (e1 < e2) and the case where the real-valued

path takes the if-branch, i.e. variable x satisfies e1 < e1 and x̃ satisfies e1 ≥ e2. The constraint

for the finite-precision variables x̃ is then

e1+δ1 < e2+δ2 ∧e1 ≥ e2

where δ1,δ2 are error intervals capturing the numerical error on evaluating e1 and e2 respec-

tively. This constraint expresses that we want those values which satisfy the condition e1 ≥ e2,
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but are “close enough” to the boundary such that their corresponding ideal real value could

take the other path. In practice, we will merge the two error variables and only add one to the

constraint: δ= δ2 −δ1. The procedure for other branch conditions is analogous.

We create such a constraint both for the variables representing finite-precision values (x̃), as

well as the real-valued ones x and use them as additional constraints when computing the

individual parts of Equation 7.1.

The constraints just described essentially express the correlations between x and x̃, but they

do not necessarily narrow down their overall ranges. These are, however, important for the

computation of the round-off errors (third part of Equation 7.1), since these depend directly

on the ranges. If the branch condition is a “range constraint”, that is, if it is of the form x < c,

where c is a constant, then we use these constraints to tighten the variable ranges. If, however,

the branch condition is a relative condition such as x < y , then the ranges of x and y remain

unconstraint, i.e. x and y individually can still take all the values in their input ranges. In this

case, we have to accept the resulting over-approximation, but we found that in general the

contribution of the round-off error term to be relatively small anyway.

7.1.3 Experimental Results

We compare the results of our techniques for computing discontinuity errors against those

implemented in Fluctuat in Table 7.1. Rosa 1st and 2nd denotes the first and second technique

respectively. The first part of the table contains unary functions. simpleInterpolator and

squareRoot are taken from [73], and we added the squareRoot3 and cubic spline benchmarks

which we show in Figure 7.4. All of these examples are representative of code one may find in

numerical programs such as embedded systems. We observe that our first technique indeed

can leverage its more accurate constraint and compute tighter bounds.

The second half of the table presents results for benchmarks in two variables. We have derived

these benchmarks by piece-wise approximating a complex function, a common pattern seen

in embedded systems. Figure 7.4 shows two representative benchmarks. (0.1) indicates that

inputs have an added initial error of 0.1, otherwise we assume round-off errors only. (X)

indicates that the benchmark’s branch condition is relational (e.g. x < y). We can see, that

except for the benchmark quadratic fit2 our new technique outperforms the existing ones

significantly, sometimes by several orders.

For benchmarks marked with ∗, we can confirm that the result determined by our tool closely

match the discontinuity present in the real-valued function. Our tool, of course, also considers

round-off errors, but for benchmarks with small input errors, real-valued discontinuity error

dominate (and often arises from the piece-wise approximation approach used to construct the

benchmark). The results thus show that our three-way separation of errors lets us decouple

the mathematical problem from the finite-precision implementation and treat each part

appropriately.
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def cubicSpline(x: Real): Real = {
require(-2 <= x && x <= 2)
if (x <= -1)
0.25 * (x + 2)* (x + 2)* (x + 2)

else if (x <= 0)
0.25*(-3*x*x*x - 6*x*x +4)

else if (x <= 1)
0.25*(3*x*x*x - 6*x*x +4)

else
0.25*(2 - x)*(2 - x)*(2 - x)

}

def squareRoot3Invalid(x: Real): Real = {
require(0 < x && x < 10 && x +/- 1e-10 )

if (x < 1e-4) 1 + 0.5 * x
else sqrt(1 + x)

}

def quadraticFitWithError(x: Real, y: Real): Real = {
require(-4 <= x && x <= 4 && -4 <= y && y <= 4 && x +/- 0.1 && y +/- 0.1)

if (x <= 0)
if (y <= 0) {
-0.0495178 - 0.188656*x - 0.0502969*x*x - 0.188656*y +
0.0384002*x*y - 0.0502969*y*y

} else {
0.0495178 + 0.188656*x + 0.0502969*x*x - 0.188656*y +
0.0384002*x*y + 0.0502969*y*y

}
else
if (y <= 0) {
0.0495178 - 0.188656*x + 0.0502969*x*x + 0.188656*y +
0.0384002*x*y + 0.0502969*y*y

} else {
-0.0495178 + 0.188656*x - 0.0502969*x*x + 0.188656*y +
0.0384002*x*y - 0.0502969*y*y

}
}

def styblinski2(x: Real, y: Real): Real = {
require(-5 <= x && x <= 5 && -5 <= y && y <= 5)

if (y < x)
-2.60357 + 0.25*x + 0.369643*x*x + 0.889286*y - 4.32143e-16*x*y - 0.896429*y*y

else
-3.76071 + 0.25*x + 0.369643*x*x + 0.889286*y + 5.08864e-16*x*y - 0.703571*y*y

}

Figure 7.4 – Representative benchmarks
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benchmark Fluctuat Rosa 1st Rosa 2nd

simpleInterpolator 3.45e-5 2.346e-5 3.401e-5

squareRoot 0.0394 0.02365 0.02382

squareRoot3 0.429 1.308e-9 1.313e-9

cubic spline 12.01 1.499e-15 1.499e-15

linear fit 1.721 0.6374 0.6374∗

quadratic fit 10.61 3.218 0.2548∗

quadratic fit (0.1) 11.25 3.226 0.2904

quadratic fit2 (X) 0.6322 9.195e-16 1.094e-15

quadratic fit2 (X, 0.1) 0.7781 0.05583 0.08554

styblinski 223.5 70.41 0.6320∗

styblinski (0.1) 239.91 71.01 3.250

styblinski2 (X) 30.495 18.69 3.665∗

styblinski2 (X, 0.1) 33.19 19.36 4.863

jetApprox 25.4 10.91 0.1702∗

jetApprox - good fit (X) 5.73 4.255 0.2121∗

jetApprox - bad fit (X) 15.32 3.822 1.358∗

Table 7.1 – Comparison of computed absolute errors with our new Lipschitz constant-based
approach against state of the art on benchmarks with discontinuities.

Table 7.2 shows that the runtimes of our two techniques are comparable. Fluctuat returns very

fast, so we do not list it here. It’s results are, however, significantly worse than Rosa’s and we

believe that the performance trade-off by using an SMT-solver is well justified. The runtimes

also show that we can gain accuracy by performing a three-way separation of errors without

loosing performance notably over the two-way approach, which makes the second technique

clearly preferable on more complex examples.
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benchmark Rosa Our tool

simpleInterpolator (float) 1 1

squareRoot (F) 3 22

squareRoot3 6 5

squareRoot3 invalid 7 7

cubic spline 14 17

natural spline 18 18

linear fit 3 4

quadratic fit 45 54

quadratic fit (0.1) 66 70

quadratic fit2 14 54

quadratic fit2 (0.1) 19 20

styblinski 118 52

styblinski (0.1) 220 74

sortOfStyblinski 53 33

sortOfStyblinski (0.1) 73 25

jetApprox 126 139

jetApprox (0.1) 161 236

jetApprox - good fit 46 33

jetApprox - good fit (0.1) 38 26

jetApprox - bad fit 108 219

jetApprox - bad fit (0.1) 105 157

Table 7.2 – Comparison of runtimes on discontinuity benchmarks. Running times are in
seconds.
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7.2 Loops

For loops where errors grow without a constant absolute bound, current tools are forced to

unroll the loops or apply widening, often returning a trivial upper bound of ∞. Even if the

loop is bounded, unrolling often scales poorly. We propose to compute the numerical errors

as a function of the number of iterations. This allows us to derive a closed form expression on

the loop’s error which constitutes an inductive loop invariant and also characterizes the loop’s

behavior. This expression can also be used to compute concrete error bounds for any given

number of loop iterations, often returning better results than unrolling.

In order to derive the closed-form expression, we apply again the idea of propagation of errors.

We want to compute the overall error after m-fold iteration f m of f . We define for any function

H : H 0(x) = x, H m+1(x) = H(H m(x)). We are thus interested in bounding:

| f m(x)− f̃ m(x̃)|

f , g and σ are now vector-valued: f , g ,σ : Rn → Rn , because we are nesting the potentially

multivariate function f .

Theorem 7.1 Let g be such that | f (x)− f (y)| ≤ g (|x − y |), it satisfies g (x + y) ≤ g (x)+ g (y) and

is monotonic. Further, σ and λ satisfy σ(x̃) = | f (x̃)− f̃ (x̃)| and |x − x̃| ≤λ. The absolute value is

taken component-wise. Then the numerical error after m iterations is given by

| f m(x)− f̃ m(x̃)| ≤ g m(|x − x̃|)+
m−1∑
i=0

g i (σ( f̃ m−i−1(x̃))) (7.2)

Proof: We show this by induction. The base case m = 1 has already been covered in subsec-

tion 6.2.1. By adding and subtracting f ( f̃ m−1(x̃))1 we get
| f m(x)1 − f̃ m(x̃)1|

...

| f m(x)n − f̃ m(x̃)n |



≤


| f m(x)1 − f ( f̃ m−1(x̃))1|

...

| f m(x)n − f ( f̃ m−1(x̃))n |

+


| f ( f̃ m−1(x̃))1 − f̃ m(x̃)1|

...

| f ( f̃ m−1(x̃))n − f̃ m(x̃)n |


Applying the definitions of g and σ

≤ g


| f m−1(x)1 − f̃ m−1(x̃)1|

...

| f m−1(x)n − f̃ m−1(x̃)n |

+σ( f̃ m−1(x̃))
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then using the induction hypothesis and monotonicity of g ,

≤ g

(
g m−1(~λ)+

m−2∑
i=0

g i (σ( f̃ m−i−1(x̃)))

)
+σ( f̃ m−1(x̃))

then using g (x + y) ≤ g (x)+ g (y), we finally have

≤ g m(~λ)+
m−1∑
i=1

g i (σ( f̃ m−i−1(x̃)))+σ( f̃ m−1(x̃))

= g m(~λ)+
m−1∑
i=0

g i (σ( f̃ m−i−1(x̃))) �

In words, the overall error after m iterations can be decomposed into the initial error propa-

gated through m iterations, and round-off error from the i th iteration propagated through the

remaining iterations.

7.2.1 Closed Form Expression

We instantiate the propagation function g as before and would like to derive a closed-form

expression for the error, as Equation 7.2 is not very evaluation friendly. In fact, evaluating Equa-

tion 7.2 as given, with a fresh set of propagation coefficients for each iteration i amounts to

loop unrolling, but with a loss of correlation between each loop iteration.

Suppose we can compute K as a matrix of propagation coefficients, and similarly obtain

σ( f̃ i ) =σ as a vector of constants, both valid over all iterations. Then we obtain a closed-form

for the expression of the error:

| f m(x)− f̃ m(x̃)| ≤ K mλ+
m−1∑
i=1

K iσ+σ

= K mλ+
m−1∑
i=0

K iσ

where λ is the vector of initial errors. If (I −K )n exists,

| f m(x)− f̃ m(x̃)| ≤ K mλ+ ((I −K )−1(I −K m))σ

We obtain K m with power-by-squaring and compute the inverse with the Gauss-Jordan

method with rational coefficients to obtain sound results. When K = I , g becomes the identity

function and so

| f m(x)− f̃ m(x̃)| ≤λ+
m−1∑
i=1

σ+σ=λ+m ·σ
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Now the question remains how to determine K and σ. As before, this boils down to determin-

ing the ranges of the variables x, x̃, over which to compute the coefficients of Ki j = supx,x̃ ( ∂ fi

∂x j
)

and which to use for the round-off error computation. We consider two cases.

Inductive Constant Ranges When the ranges of the variables of the loop are inductive, that

is, both the real-valued and the finite-precision values remain within the initial ranges, then

these are clearly the ranges for the computation of K and round-offs σ. We require the user to

specify both the real-valued ranges of variables (e.g. a <= x && x <= b) as well as the actual

finite-precision ones (c <= ~x && ~x <= d). We also require that the actual ranges always

include the real ones ([a,b] ⊆ [c,d ]), hence it is the actual ranges ([c,d ]) that are used for the

computation of K and σ.

Iteration-dependent Ranges For many loops however, inductive constant ranges either do

not exist or are very hard to prove. Or it may be that only the real-valued ranges are inductive,

but, because of round-off errors, the actual ones are not. We still want to analyze these loops,

but it is clear that the validity of the computed K ,σ and final errors is limited to the validity of

the ranges which we use for their computation.

Our tool attempts to verify that the range bounds are valid, i.e. inductive. Should it not succeed,

it will nonetheless perform the error computation with the user-given actual ranges. The

generated code will, however, include the precondition require(c <= x && x <= d), which

in Scala is checked at runtime. We believe that this is a reasonable compromise, as these

assertions are fast to check and in many applications ranges do stay bounded.

7.2.2 Truncation Errors

What if round-off errors are not the only errors? If the real-valued computation given by the

specification is also the ideal computation, we can simply add the errors in the same way as

round-off errors. If the real-valued computation is, however, already an approximation of

some other unknown ideal function, say f∗, it is not directly clear how our error computation

applies. This may be the case, for example, for truncation errors. Let us suppose that we can

compute (or at least overestimate) these by a function τ :Rn →Rn , i.e. τ f∗(x) = | f∗(x)− f (x)|.

In the following we consider the one-dimensional case n = 1 for simplicity of exposition, but it

generalizes as before to the n-dimensional case. We can apply a similar separation of errors as

before:

| f∗(x)− f̃ (x̃)|
≤ | f∗(x)− f (x)|+ | f (x)− f (x̃)|+ | f (x̃)− f̃ (x̃)|
= τ(x)+ g (|x − x̃|)+σ(x̃)
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which lets us decompose the overall error into the truncation error, the propagated initial

error and the round-off error. If we now iterate, we find by a similar argument as before:

| f m
∗ (x)− f̃ (x̃)|

≤ g m(|x − x̃|)+
m−1∑
j=0

g j
(
τ( f m− j−1

∗ (x))
)
+ g j

(
σ( f̃ m− j−1(x̃))

)
= g m(|x − x̃|)+

m−1∑
j=0

g j
(
τ( f m− j−1

∗ (x))+σ( f̃ m− j−1(x̃))
)

The result essentially means that our previously defined method can also be applied to the

case when truncation (or similar) errors are present. We do not pursue this direction further

however, and leave a proper automated treatment of truncation errors to future work.

7.2.3 Experimental Results

We have implemented our proposed technique inside Rosa and evaluate it for the case of

loops on a number of examples which demonstrate several features of our system.

Newton-Raphson Method We begin with an example of a loop in which we wish to show

that the value of a variable always remains in a certain range. Such a property is important, for

instance, in the case of iterative algorithms and controllers, where unboundedness suggests

that the system diverges. The following function taken from [56] implements a Newton-

Raphson approximation. (We abbreviate e.g. x*x*x as x3 for readability.)

def newton(x: Real, k: LoopCounter): Real = {

require(-1.0 < x && x < 1.0 && -1.0 < ~x && ~x < 1.0)

if (k < 10)

newton(x - (x - (x3)/6.0 + (x5)/120.0 + (x7)/5040.0) /

(1 - (x*x)/2.0 + (x4)/24.0 + (x5)/720.0), k + 1)

else

x

} ensuring(res => -1.0 < res && res < 1.0 && -1.0 < ~res && ~res < 1.0)

Note that the precondition is also the loop invariant we wish to check. Our tool can auto-

matically verify that this specification is inductive, also in the presence of round-off errors.

Fluctuat, relying on affine arithmetic cannot prove that even one iteration remains in the given

bound, and applying it to an unbounded loop produces ∞ as the error bound. Our result

holds for any number of iterations and does not rely on unrolling. If we were to change the

range specification to -1.2 < x && x < 1.2 && -1.2 < ~x && ~x < 1.2, the verification (cor-

rectly) fails and our tool reports a counter-example. Thus, our system can be used to establish

boundedness of values in loops even if the number of iterations is unknown at compile time.
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@model def nextItem: Real = {
????

} ensuring (res => -1200 <= res && res <= 1200 && res +/- 1e-8)

def mean(n: Int, m: Real): Real = {
require(-1200 <= m && m <= 1200 && 2 <= n && n <= 1002 &&

-1200.5 <= ~m && ~m <= 1200.5)
if (n < 102) {
val x = nextItem
val m_new = ((n - 1.0) * m + x) / n
mean(n + 1, m_new)

} else
m

} ensuring (res => -1200.00 <= res && res <= 1200.00)

Figure 7.5 – Running average computation

Running Average Now we return to numerical error estimation. Figure 7.5 shows the im-

plementation of an online computation of the average of numbers coming from the range

[−1200,1200]. The method nextItem models a fresh value from an undetermined source.

Round- off errors allow the computed value to go outside of [−1200,1200], we thus use the

actual range [−1200.5,1200.5] for the error computation. We chose this range optimistically to

cover a substantial number of iterations.

Table 7.3 compares the errors and runtimes computed by Rosa against the errors determined

by Fluctuat. We compare with Fluctuat using complete unrolling of loops, because we have

found that abstract interpretation with the domains in Fluctuat does not stabilize on these

kinds of loops due to the unboundedly growing errors. In contrast, our system can discover

parametric bounds that grow as a function of the loop iteration. In particular, the overall error

is given as

K mλ+ ((I −K )−1(I −K m))σ

where Rosa determines K = 0.999001996, σ = 1.5082e-10 and λ=1.1369e-13 for example for the

case of no added initial errors. If we try to unroll the loop within Rosa, it does not finish even

for small numbers of iterations in reasonable time, hence we do not list it here.

In this example, the computation depends on the loop counter n, making the constraints

different for different loop bounds and thus different bounds on n. This may make the

constraint more or less hard to solve for Z3, which results in the, maybe surprising, variation

in running times.

The comparison in Table 7.3 shows the trade-off our technique makes between accuracy

and scalability. Recall that our proposed technique makes two approximations: firstly, it

approximates the effect of each loop iteration in isolation, potentially loosing correlation
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# iterations Fluctuat time Rosa time

without additional error

100 1.522e-11 0.5 7.486e-10 20

500 7.742e-11 9 2.393e-8 28

1000 1.545e-10 35 9.544e-8 28

2000 3.085e-10 180 1.306e-7 19

3000 4.554e-10 425 1.436e-7 19

4000 6.166e-10 814 1.484e-7 19

with 1e-8 error

100 9.916e-9 0.5 3.203e-7 20

500 1.006e-8 9 1.608e-6 28

1000 1.014e-8 39 3.260e-6 28

2000 1.030e-8 176 4.460e-6 19

3000 1.045e-8 423 4.903e-6 19

4000 1.062e-8 813 5.066e-6 19

Table 7.3 – Comparison of absolute errors and running times computed by Fluctuat and Rosa
on the mean benchmark. Loop unrolling with Rosa times out. Time is measured in seconds.

information and secondly, the propagation coefficients are computed across the whole input

range. While Fluctuat, performing loop unrolling and keeping correlations computes smaller

error bounds, our tool is significantly faster and more scalable for a larger number of iterations

(> 1000).

Pendulum Figure 7.6 shows a Runge Kutta order 2 simulation of a pendulum, where t and w

are the angle the pendulum forms with the vertical and the angular velocity respectively. We

approximate the sine function with its Taylor series polynomial, and consider two versions:

the order 3 and order 7 Taylor approximation. In both cases we focus on round-off errors

between the system following the dynamics given by the polynomial approximation, and the

system following the same dynamics but implemented in finite precision.

The precondition now specifies two sets of ranges. -2 <= t constrains the real-valued variable

t , whereas -2.01 <= ~t specifies that its actually implemented finite-precision counterpart

remains in a slightly larger range. This latter interval includes all errors including round-offs

and is therefore larger.
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def sine(x: Real): Real = {
require(-5 <= x && x <= 5)
x - x*x*x/6 //+ x*x*x*x*x/120

}

def pendulum(t: Real, w: Real, n: LoopCounter): (Real,Real)={
require(-2 <= t && t <= 2 && -5 <= w && w <= 5 &&
-2.01 <= ~t && ~t <= 2.01 && -5.01 <= ~w && ~w <= 5.01)

if (n < 1000) {
val h: Real = 0.01
val L: Real = 2.0
val m: Real = 1.5
val g: Real = 9.80665
val k1t = w
val k1w = -g/L * sine(t)
val k2t = w + h/2*k1w
val k2w = -g/L * sine(t + h/2*k1t)
val tNew = t + h*k2t
val wNew = w + h*k2w

pendulum(tNew, wNew, n + 1)
} else {
(t, w)

}
}

Figure 7.6 – Pendulum simulation with sine approximation

During the analysis, our tool determines the following propagation coefficient matrix K for

the order 3 approximation:

1.0002500818333124 0.01

0.05250059956010406 1.0002625029978005

and for the order 5 approximation:

1.0000833441850905 0.01

0.04903325006220655 1.0000872967293692

Notice that the latter numbers are smaller, partly by an order of magnitude, which strongly

suggests that this approximation is preferable with respect to numerical errors.

Table 7.4 compares computed error bounds by Fluctuat, again with loop unrolling, against the

results obtained by our tool. Rosa’s loop unrolling again fails to provide results in acceptable

time. Fluctuat is able to compute error bounds for smaller number of iterations, although

our bounds are more accurate nearly throughout. For larger numbers of iterations, Rosa is
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# iter Fluctuat time Our tool time

order 3

5 1.46e-15 0.04 1.47e-15 4

10 2.88e-15 0.13 2.87e-15 4

15 4.53e-15 0.39 4.44e-15 4

20 6.51e-15 0.89 6.19e-15 4

25 8.98e-15 2 8.15e-15 4

50 5.07e-14 16 2.21e-14 4

100 ∞ - 9.07e-14 4

250 ∞ - 3.11e-12 4

500 ∞ - 9.58e-10 4

1000 ∞ - 9.02e-5 4

order 5

5 1.47e-15 0.06 1.47e-15 8

10 2.92e-15 0.35 2.88e-15 8

15 4.68e-15 1 4.45e-15 8

20 6.95e-15 3 6.21e-15 8

25 1.01e-14 5 8.18e-15 8

50 2.43e-13 49 2.21e-14 8

100 ∞ - 8.82e-14 8

250 ∞ - 2.67e-12 8

500 ∞ - 6.54e-10 8

1000 ∞ - 3.89e-5 8

Table 7.4 – Comparison of absolute errors on t and running times computed by Fluctuat and
our tool on the pendulum benchmark. Time is measured in seconds.

the only one that can still compute meaningful error bounds. Also note, that while Fluctuat’s

computation time grows with the number of iterations, our time is constant, since the propa-

gation coefficient matrix is the same for all iterations in this case, and using our closed-form

expression for the errors, the final loop bound computation is fast.

Gravity Simulation Figure 7.7 shows the code of our Jupiter simulation, which we adapted

from the nbody benchmark from [6]. We have abbreviated -6 <= x && x <= 6 by x∈[-6,6]
for readability. Note that the precondition includes the clause x*x + y*y + z*z >= 20.0

imposing a minimum distance between planets, which ensures that taking the square root

is safe, even in the presence of numerical errors, and that dividing by the results is similarly
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def step(x:Real, y:Real, z:Real, vx:Real, vy:Real, vz:Real,
i:LoopCounter): (Real, Real, Real, Real, Real, Real) = {
require(x ∈ [-6, 6] && y ∈ [-6, 6] && z ∈ [-0.2, 0.2] &&

vx ∈ [-3, 3] && vy ∈ [-3, 3] && vz ∈ [-0.1, 0.1] &&
x*x + y*y + z*z >= 20.0 &&
~x ∈ [-6, 6] && ~y ∈ [-6, 6] && ~z ∈ [-0.2, 0.2] &&
~vx ∈ [-3, 3] && ~vy ∈ [-3, 3] && ~vz ∈ [-0.1, 0.1]
(~x)*(~x) + (~y)*(~y)+ (~z)*(~z) >= 20.0)

if (i < 100) {
val dt = 0.1
val solarMass = 39.47841760435743
val distance = sqrt(x*x + y*y + z*z)
val mag = dt / (distance * distance * distance)

val vxNew = vx - x * solarMass * mag
val vyNew = vy - y * solarMass * mag
val vzNew = vz - z * solarMass * mag
val x1 = x + dt * vxNew
val y1 = y + dt * vyNew
val z1 = z + dt * vzNew
step(x1, y1, z1, vxNew, vyNew, vzNew, i + 1)

} else {
(x, y, z, vx, vy, vz)

}
}

Figure 7.7 – Planet orbiting the Sun simulation

well behaved. At the same time, this constraint also makes the analysis of the loop errors

challenging, as does the presence of square root and a large number of variables. The plot

from the introduction (Figure 1.2) reports the errors of this benchmark for one specific initial

configuration (corresponding to the position of Jupiter). The analysis done by our tool in

this example covers all configurations where the planet’s position and velocity coordinates

satisfy the constraints in the precondition. The constraint x*x + y*y + z*z ≥ 20.0 also limits

the possible orbits we want to do the analysis for. The following table compares the final

errors computed for the given constraint and for the case when we relax the condition to

x*x + y*y + z*z ≥ 15.0 for 100 iterations. As the number of possible cases our tool has to

consider is larger, we also expect the over-approximation committed during the analysis to

grow.

x2 + y2 + z2 ≥ 15 ≥ 20

x 8.473e-07 1.894e-08

y 1.174e-07 2.087e-09

z 9.190e-07 2.635e-08
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As the table shows, the over-approximation is modest and our tool still computes meaningful

results. To compare to the simulation from the introduction, the errors on x, y, z after 100

iterations were on the order of 1e-14. These errors are however, obtained for one specific

run, whereas our tool performs a worst-case analysis for a large number of runs at the same

time. To our knowledge, our tool is the only one that can handle programs of this complexity.

Fluctuat returns with an error bound of [−∞,∞], and Rosa again does not finish unrolling in a

reasonable time.

Conclusion

We have presented techniques for computing the errors due to discontinuities and we have de-

rived a closed-form expression for numerical errors in unbounded loops. Both techniques rely

crucially on a separation of errors and a range computation which can take into account addi-

tional constraints on variables. Our experimental results show that our approach substantially

improves over the current state-of-the-art.
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8 Certifying Results of Iterative
Algorithms

Much of numerical software uses iterative algorithms to solve for example systems of nonlinear

equations and many are available as highly optimized black-box functions in (commercial)

scientific software packages such as MATLAB [113], Octave [3] or Mathematica [5]. Often the

source code is not available and the functionality and its mathematical meaning are not well

documented, making it hard to verify the computed results.

Many iterative algorithms are self-stabilizing in that individual iterations are independent of

each other and errors from one iteration get corrected in subsequent ones [95]. It thus does

not make much sense to track round-off errors throughout the entire computation. Iterative

algorithms however suffer from truncation errors: the exact result can be obtained only in

the limit and at some point the iteration has to be stopped. Our runtime solution aims at

quantifying these errors rigorously by using theorems from validated numerics. We integrate

the error computation with Scala macros which perform a part of the computation already

at compile time, yielding a sound and efficient method to certify solutions of systems of

nonlinear equations.

This chapter is based on the paper [45]. Source code for our library, called Cassia, as well as all

examples are available from github.com/malyzajko/cassia.

8.1 Introduction

To understand the notion of method errors we address, consider an iterative method that

performs a search for the solution of f (x) = 0 by computing a sequence of approximations

x0, x1, x2, . . .One common stopping criterion for an iteration is finding xk for which | f (xk )| < ε,

for a given error tolerance ε. From a validation point of view, however, we are ultimately

interested not in ε but in τ such that |x−xk | < τ, where x is the actual solution in real numbers.

Fortunately, we can estimate τ from ε using a bound on the derivative of f in an interval

conservatively enclosing x and xk .
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A tempting approach is to perform the entire computation of xk using interval or affine

arithmetic. However, this approach would be inefficient, and would give too pessimistic

error bounds. Instead, our method uses a runtime checking approach. We allow any standard

non-validated floating point code to compute the approximation xk . We perform only the final

validation of an individual candidate solution xk using a range-based computation. In this

way we achieve efficiency and reusability of existing numerical routines, while still providing

rigorous bounds on the total error. The bounds certified by our system are always sound

for the given execution. Our system thus realizes a new kind of assertion, appropriate for

numerical computation: an assertion that verifies “this was precise enough” in a way that

takes into account both the numerical problem and floating point semantics.

8.2 Examples

We illustrate our techniques with several examples that model physical processes, taken from

[151, 43, 133]. These examples illustrate the applicability of our techniques and introduce the

main features of our runtime library. For space reasons we abbreviate the Scala Double type

with D (the code snippets remain valid Scala code using the rename-on-import Scala feature).

We include variable type declarations for expository purposes, even though the Scala compiler

can infer all but the function parameter types. Method names printed in bold are part of our

library.

Stress on a turbine rotor We illustrate the basic features of our library on the following

system of three non-linear equations with three unknowns (v,ω,r ). An engineer may need to

solve such a system to compute the stress on a turbine rotor [151].

3+ 2

r 2 − 1

8

(3−2v)

1− v
ω2r 2 = 4.5

6v − 1

2

v

1− v
ω2r 2 = 2.5

3+ 2

r 2 − 1

8

(1+2v)

1− v
ω2r 2 = 0.5

Given some (blackbox) library function computeRoot and our library for certifying solutions,

the engineer can write the following code:

val f1 = (v: D,w: D,r: D) ⇒ 3 + 2/(r*r) - 0.125*(3-2*v)*(w*w*r*r)/(1-v)-4.5

val f2 = (v: D,w: D,r: D) ⇒ 6*v - 0.5 * v * (w*w*r*r) / (1-v)-2.5

val f3 = (v: D,w: D,r: D) ⇒ 3 - 2/(r*r) - 0.125*(1+2*v)*(w*w*r*r) / (1-v)-0.5

val x0 = Array(0.75, 0.5, 0.5)

val roots: Array[D] = computeRoot(Array(f1,f2,f3), jacobian(f1,f2,f3), x0, 1e-8)

val err:Array[Interval] = assertBound(f1,f2,f3, roots(0),roots(1),roots(2),1e-8)
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Figure 8.1 – A double pendulum standing close to an obstacle

The method assertBound takes as input the three functions of our system of equations, the

previously computed roots and a tolerance and returns sound bounds on the true errors on

the roots. In the case where these errors are larger than the tolerance specified, the method

throws an exception and acts like an assertion. Our library also includes the method jacobian,

which computes the Jacobian matrix of the functions f1, f2 and f3 symbolically at compile

time.

The true roots for v , w and r are 0.5,1.0 and 1.0 respectively, and the roots and maximum

absolute errors computed by the above code are

0.5, 1.0000000000018743, 0.9999999999970013

2.3684981521893e-15, 1.8806808806556e-12, 3.0005349681420e-12

Note that the error bounds that were computed are, in fact, smaller than the tolerance given

to the numerical method used to compute the root.

Double pendulum The following example demonstrates how our library fits into a runtime

assertion framework. A double pendulum rotates with angular velocity ω around a vertical

axis (like a centrifugal regulator)[43]. At equilibrium the two pendulums make the angles x1

and x2 to the vertical axis. It can be shown that the angles are determined by the equations

tan x1 −k(2sin x1 + sin x2) = 0

tan x2 −2k(sin x1 + sin x2) = 0
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where k depends on ω, the lengths of the rods and gravity. Suppose the pendulum is standing

close to a wall (as in Figure 8.1) and we would like to verify that in the equilibrium position it

cannot hit the wall. Also suppose that the distance to the center of the pendulum is given by a

function distancePendulumWall. Then the following code fragment verifies that a collision is

impossible in the real world, not just in a world with floating-points.

val distancePendulumWall : SmartFloat = ...

val length = ... //length of bars

val tolerance = 1e-13; val x0 = Array(0.18, 0.25)

val f1 = (x1: D, x2: D) ⇒ tan(x1) - k * (2*sin(x1) + sin(x2))

val f2 = (x1: D, x2: D) ⇒ tan(x2) - 2*k * (sin(x1) + sin(x2))

val r: Array[D] = computeRoot(Array(f1,f2), jacobian(f1,f2), x0, tolerance)

val roots: Array[SmartFloat] = certify(r, errorBound(f1, f2, r(0), r(1), tolerance))

val L: SmartFloat = _sin(roots(0)) * length + _sin(roots(1)) * length

if (certainly(L <= distancePendulumWall)) {

// continue computation

} else {

// reduce speed of the pendulum and repeat

}

To account for all sources of uncertainty, we use the SmartFloat data type from chapter 3.

SmartFloat performs a floating point computation while additionally keeping track of different

sources of errors, including floating point round-off errors, as well as errors arising from other

sources, for example, due to the approximate nature of physical measurements.

In our example, distancePendulumWall and certify both return a SmartFloat; the first one

captures the uncertainty on a physical quantity, and the second one the method error due

to the approximate iterative method. If the comparison in line 9 succeeds, we can be sure

the pendulum does not touch the wall. This guarantee takes into account round-off errors

committed during the calculation, as well as the error committed by the computeRoot method

and their propagation throughout the computation.

State equation of a gas Values of parameters may only be known within certain bounds but

not exactly, for instance if we take inputs from measurements. Our library provides guarantees

even in the presence of such uncertainties. Equation 8.1 below relates the volume V of a gas to

the temperature T and the pressure p, given parameters a and b that depend on the specifics

of the gas, N the number of molecules in the volume V and k the Boltzmann constant [133].

[p +a(N /V )2](V −N b) = kN T (8.1)

If T and p are given, one can solve the nonlinear Equation 8.1 to determine the volume

occupied by the (very low-pressure) gas. Note however, that this is a cubic equation, for

which closed-form solutions are non-trivial, and their approximate computation may incur
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substantial round-off errors. Using an iterative method, whose result is verified by our library,

is thus preferable:

val T = 300; val a = 0.401; val b = 42.7e-6;

val p = 3.5e7; val k = 1.3806503e-23; val x0 = 0.1

val N: Interval = 1000 +/- 5

val f = (V: D) ⇒ (p + a * (N.mid / V) * (N.mid / V)) * (V - N.mid * b)

- k * N.mid * T

val V: D = computeRoot(f, derivative(f), x0, 1e-9)

val Vcert: SmartFloat = certify(V, assertBound(f, V, 0.0005))

We make the assumption that we cannot determine the number of molecules N exactly, but we

are sure that our number is accurate at least to within ±5 molecules (line 3). We compute the

root as if we knew N exactly, using the middle value of the interval and the standard Newton’s

method and only check a posteriori that the result is accurate up to ±0.0005m3, for all N in the

interval [995,1005]. Our library will confirm this providing us also with the (certified) bounds

on V : [0.0424713, 0.0429287].

8.3 Certification Technique

Our certification technique is based on several theorems from the area of validated numerics.

It can verify roots of a system of nonlinear equations computed by an arbitrary black-box

solution or estimation method.

In the following, we denote computed approximate solutions by x̃ and true roots by x, as

before. IR denotes the domain of intervals over the real numbers R and variables written in

bold type, e.g. X, denote interval quantities. For a function f , we define f (X) = { f (x) | x ∈ X}.

All errors are given in absolute terms. Error tolerance, that is, the maximum acceptable value

for |x̃ −x|, will be denoted by τ or tolerance in code. We will use the term range arithmetic to

mean either interval arithmetic or affine arithmetic. The material presented in this section is

valid for any such arithmetic, as long as it computes guaranteed enclosures containing the

result that would be computed in real numbers. We wish to compute a guaranteed bound on

the error of a computed solution, that is, determine an upper bound on ∆x = x̃ −x. Note that

∆x is different from τ, because ∆ considers the sign of the difference.

8.3.1 Unary Case

For expository purposes, consider first the unary case f :R→R, f differentiable, and suppose

that we wish to solve the equation f (x) = 0. Then, by the Mean Value Theorem

f (x̃) = f (x +∆x) = f (x)+ f ′(ξ)∆x
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where ξ ∈ X and X is a range around x̃ sufficiently large to include the true root. Since f (x) = 0,

∆x ∈ f (x̃)

f ′(X)
(8.2)

We now have set membership instead of equality because the right-hand side is now a range-

valued expression, which takes into account the fact that ξ in the Mean Value Theorem is not

known exactly. The following theorem (stated in the formulation from [137]) formalizes this

idea.

Theorem 8.1 Let a differentiable function f : R→ R, X = [x1, x2] ∈ IR and x̃ ∈ X be given, and

suppose 0 ∉ f ′(X). Define

N (x̃,X) := x̃ − f (x̃)/ f ′(X). (8.3)

If N (x̃,X) ⊆ X, then X contains a unique root of f . If N (x̃,X)∩X =∅, then f (x) 6= 0 for all x ∈ X.

Claim 8.2 If, following Equation 8.2, we compute an interval ∆x = f (x̃)/ f ′(X) enclosing the

upper bound on the error ∆x, and if ∆x ⊆ [−τ,τ], then the approximately computed result x̃ is

indeed within the specified precision τ.

Indeed, choose X = [x̃ −τ, x̃ +τ], i.e. the computed approximate solution plus or minus the

tolerance we want to check, and compute ∆x = f (x̃)
f ′(X) . Then the condition N (x̃,X) ⊆ X from

Theorem 8.1 becomes

N (x̃,X) = x̃ −∆x ⊆ X = [x̃ −τ, x̃ +τ]

If ∆x ⊆ [−τ,τ], this condition holds, and thus the computed result is within the specified

precision.

Our assertion library uses the procedure in Figure 8.2 for unary problems. Note that we not

only check that errors are within a certain error tolerance, but we also return the computed

error bounds. As we show in Section 8.5, the computed error bounds tend to be much tighter

than the user-required tolerance. As Section 3 illustrates, this error bound can be used in

subsequent computations to track overall errors more precisely.

def assertBound (Function, Derivative, xn, τ)
2 X = [xn ± τ]

error = Function(xn) / Derivative(X)
4 if error ∩ [-τ, τ] = ∅ throw SolutionNotIncludedException

if ¬(error ⊂ [-τ, τ]) throw SolutionCannotBeVerifiedException
6 return error

Figure 8.2 – Algorithm for computing errors in the unary case
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8.3.2 Multivariate Case

Our error estimates for the unary case follow from the Mean Value Theorem, which also

extends to n dimensions. Theorem 8.3 follows the interval formulation of [137] where J f is the

Jacobian matrix of f . If D = (x1, . . . ,xn) ∈ IRn , let D̄ denote x1 × . . .×xn. For a,b ∈ D̄, define the

convex union as a∪b = {a +λb | λ ∈ [0,1]}. For A ⊆ D̄, define hull (A) :=⋂
{Z ∈ IRn | A ⊆ Z}.

Theorem 8.3 Let there be given a continuously differentiable f : D̄ → Rn with D ∈ IRn and

x, x̃ ∈ D̄. Then for X := hull (x∪ x̃)

f (x) ∈ f (x̃)+ J f (X)(x − x̃)

We extend our method for computing the error on each root in a similar manner:

δ ∈ J−1
f (X) · (− f (x̃)) (8.4)

where δ= x − x̃ is the vector of errors on our tentative solution. Since we now must consider

the Jacobian of f instead of a single derivative function, we can no longer solve for the errors

by a simple scalar division. We wish to find the maximum possible error, so we need a way

to compute an upper bound on the right-hand side of Equation 8.4. Computing the inverse

of a Jacobian matrix in range arithmetic typically does not yield a useful result, due to over-

approximation. Instead, we use the following Theorem 8.4, which is originally due to [96], but

we use the formulation by [137].

Theorem 8.4 ([137]) Let A,R ∈ Rn×n , b ∈ Rn and E ∈ IRn be given, denote by I the identity

matrix. Assume

Rb + (I −R A)E ⊂ i nt (E). (8.5)

where i nt (E) denotes the interior of the set E. Then the matrices A and R are non-singular and

A−1b ∈ Rb + (I −R A)E.

We instantiate Theorem 8.4 with all possible matrices A such that A ∈ J f (X) and all possible

vectors b such that b ∈− f (x̃), where J f (X) and − f (x̃) are both evaluated in range arithmetic.

Combining with Condition 8.4, we obtain

δ ∈ J−1
f (X)∗− f (x̃) ⊆ Rb + (I −R A)E, (8.6)

provided that Condition 8.5 is satisfied in range arithmetic.

Matrix R in Theorem 8.4 can be chosen arbitrarily as long as Condition 8.5 holds. A common

choice is to use an approximate inverse of A. In our case, A is range-valued, so we first compute

the matrix whose entries are the midpoints of the intervals of A, and use its inverse as R. It
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def assertBound (functions, Jacobian, xn, τ)
Xn = [xn ± τ]
A = Jacobian(Xn)
// goal is to certify that xn is a zero of ’functions’ up to τ

b = - functions(xn)
R = inverse(mid(A)) // calculated in ordinary floating points
E = [0 ± τ]
errors = R*b + (I - RA)E // Theorem 8.4
if errors ∩ [-τ, τ]n = ∅n throw SolutionNotIncludedException
if ¬(errors ⊆ [-τ, τ]n) throw SolutionCannotBeVerifiedException
return errors

Figure 8.3 – Algorithm for computing errors in the multivariate case

now remains to determine X. We choose it to be the vector where the i th entry is the interval

around x̃i with width τ. If we can then show that Condition 8.6 holds, we have proven that X

indeed contains a solution. Moreover, we have computed a tighter upper bound on the error.

We obtain the procedure in Figure 8.3 for computing error bounds for systems of equations.

The variables Xn, A, b, E, errors are all range valued.

Our approach requires the derivatives to be non-zero, respectively the Jacobian to be non-

singular, in the neighborhood of the root. This means that at present we can only verify single

roots. Verifying multiple roots is an ill-conditioned problem by itself, and thus requires further

approximation techniques, as well as dealing with complex values. We leave this for future

work. Our library does distinguish the cases when an error is provably too large from the

case when our method is unable to ensure the result: we use two different exceptions for this

purpose.

8.4 Implementation

Now that we have the theoretical building blocks the question is how to integrate it into a

general-purpose programming language like Scala such that the resulting assertion framework

for real numbers is intuitive to use but at the same time efficient. In particular, Algorithms 8.2

and 8.3 require the computation of derivatives and their evaluation in range arithmetic, but

we do not want to require the user to provide two differently typed functions, one in Doubles

for the solver and one in Intervals for our verification method. Also, the solver may not

actually require derivatives or the Jacobian, hence this computation should be performed

automatically and symbolically at compile time. As the verification is a dynamic one, we

identify the Scala macro framework as an ideal candidate for the integration of our library.
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8.4.1 Scala Macros

Scala version 2.10 introduced a macro facility [31]. To the user macros look like regular

methods, but their code is executed at compile time and performs a transformation on the

Scala compiler abstract syntax tree (AST). Thus, by passing a regular function to a macro, we

can access its AST and perform the necessary transformations. The type checker runs after

the macro expansion which means that the resulting code retains all guarantees from Scala’s

strong static typing. Our library provides the following functions

def errorBound(f: (Double ⇒ Double), x: Double, tol: Double): Interval

def assertBound(f: (Double ⇒ Double), x: Double, tol: Double): Interval

def certify(root: Double, error: Interval): SmartFloat

and similarly for functions of 2, 3 and more variables. The function assertBound computes

the guaranteed bounds on the errors using Algorithms 1 and 2. errorBound removes the

assertion check and only provides the computed error; the programmer is then free to define

individual assertions. certify wraps the computed root(s) including their associated errors in

the SmartFloat data type and hereby provides the link to our assertion checking framework.

We also expose the automatic symbolic derivative computation facility:

def derivative(f: Double ⇒ Double): (Double ⇒ Double)

def jacobian(f1: (Double, Double) ⇒ Double, f2: (Double, Double) ⇒ Double):

(Array[Array[(Double, Double) ⇒ Double]])

...

The functions passed to our macros have type (Double∗) => Double and may be given as

anonymous functions, or alternatively defined in the immediately enclosing method or class.

The functions may use parameters, with the same restrictions on their original definitions.

This is particularly attractive, as it allows us to write concise code as presented in the code

snippets in section 8.2.

Integration With SmartFloats We combine the result certification with the SmartFloat run-

time library. If no exceptions are thrown, the program would take the same path if real

numbers were used instead of floating-points and the values computed are within the bounds

computed by the SmartFloat data type. This assertion language thus tracks two sources of

errors

• quantization errors due to the discrete floating-point number representation

• method errors due to the approximate numerical method

The bounds on computed values are ensured by using SmartFloats throughout the straight-

line computations. Note that the numerical methods for computing the roots can still use

only Doubles since we verify the result a posteriori.
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8.4.2 Computing Derivatives

We now turn our attention to efficiency. Given the function ASTs, we compute the derivatives

or Jacobian matrices already at compile time, and thus need to do this symbolically. The

straightforward runtime option is to use automatic differentiation [76]. We will show however

that this incurs an unnecessary computation cost. It turns out that fairly simple optimizations

on top of the usual derivative rules already provide the needed precision and efficiency:

• constants are pulled outside of multiplications (before derivation)

• multiplications of the same terms are compacted into a power function (before deriva-

tion)

• multiplication and addition of zeros or ones arising from the differentiation are simpli-

fied (after derivation)

• powers with integers are evaluated by repeated multiplication (at runtime)

Overall, the effect is that the resulting expressions of derivatives do not blow up. This is

important for evaluation efficiency, since each operation carries a computation cost (see Table

8.3). On the other hand, precision may be affected as well, since the over-approximation

committed by range arithmetic may depend on the formulation of the expression. We have

compared the errors computed with our symbolic differentiation routine against the results

obtained with manually provided derivatives. The latter have the format one would compute

by hand on paper. We did the comparison on our unary benchmark problems (Table 8.1), and

it turns out that except for two instances, the errors computed are exactly the same. For the

two other functions, our manual derivatives actually compute an error that is worse, but the

precision is still sufficient to prove solutions are correct to within the given tolerance.

8.4.3 Uncertain Parameters

Theorem 8.4 also holds for range-valued A and b. It is thus natural to extend our macro

functions to also accept range-valued parameters. The SmartFloat data type already has the

facility to keep track of manually user-added errors so we can track external uncertainties

as a third source of errors. Consider again the gas state equation example from Section 8.2,

especially the following two lines:

val N = 1000 +/− 5

val f = (V: D) ⇒ (p + a * (N.mid / V) * (N.mid / V)) * (V - N.mid * b)

- k * N.mid * T

The +/- method, in this context, returns an Interval, which in turn defines the mid method.

Thus, the function type checks correctly and can be passed for example to a solver, but inside

the macro we can use the interval version of the parameter.
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8.5 Evaluation

Accuracy The theorems from Section 8.3 provide us with sound guarantees regarding upper

bounds. In practice however, we also need our method to be precise. Since our library

computes error bounds and not only binary answers for assertions, we are interested in

obtaining as precise error estimates as possible. We have evaluated the precision of our

approach in the following way. We compute a high-precision estimate of the root(s) using

the QuadDouble library [16], which allows us to compute the true error on the computed

solutions with high confidence. We compare this error to the one provided by our library.

The results on a number of benchmark problems chosen from numerical analysis textbooks

are presented in Tables 8.1 and 8.2. We are able to confirm the error bounds specified by the

user in all cases. In fact, on all examples that we tried, our library only failed in the case of a

multiple root for the reasons explained in Section 8.3 and never for precision reasons.

We split the evaluation between the unary case and the multivariate case because of their

different characteristics. All numbers are the maximum absolute errors computed. The

numbers in parentheses are the tolerances given to the solvers and have been chosen randomly

to simulate the different demands of the real world. We highlight the better error estimates in

bold.

First of all we note that the precision of the error estimates we obtain is remarkably good.

Another perhaps surprising result of our experiments is that using interval arithmetic is

generally more precise (in the unary case) or not much worse (in the multivariate case) than

affine arithmetic, although the latter is usually presented as the superior approach. Indeed,

for the tracking of round-off errors we have shown affine arithmetic to provide (sometimes

much) better results that interval arithmetic in chapter 3. The reason why intervals perform as

well is that for transcendental functions they are able to compute a tighter range, since affine

arithmetic has to compute a linear approximation of those functions. The exceptions in the

unary case are the degree 6 polynomial and the carbon gas state equation example, which

confirms our hypothesis, since in that case the dependency tracking of affine arithmetic can

recover some of the imprecision in the long run.

For the multivariate case, affine arithmetic performs generally better because the computation

consists to a large part of linear arithmetic. Due to the larger computation cost, however, we

leave it as a choice for the user which arithmetic to use and select interval arithmetic as a

default.

8.5.1 Performance

Table 8.3 compares the performance of our implementation when using affine, interval arith-

metic, or interval arithmetic without the differentiation optimizations listed in Section 8.4.2.

Switching off the optimizations is similar to performing automatic differentiation. We can see

that our optimizations actually make a big difference in the runtimes, improving by up to 37%
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Problem (tolerance specified) certified (affine) certified (interval) true errors

system of rods (1e-10) 7.315e-13 1.447e-13 1.435e-13

Verhulst model (1-e9) 4.891e-10 9.783e-11 9.782e-11

predator-prey model (1e-10) 7.150e-11 7.147e-11 7.146e-11

carbon gas state equation (1e-12) 1.422e-17 2.082e-17 1.625e-26

Butler-Volmer equation (1e-10) 4.608e-15 3.8960e-15 3.768e-17

(x/2)2 − si n(x) (1e-10) 7.4e-16 5.879e-16 1.297e-16

ex (x −1)−e−x (x +1) (1e-8) 5.000e-10 5.000e-10 5.000e-10

degree 3 polynomial (1e-7) 7.204e-9 1.441e-9 1.441e-9

degree 6 polynomial (1e-5) 2.741e-14 3.538e-14 2.258e-14

Table 8.1 – Comparison of errors for unary benchmarks. All numbers are rounded.

Problem (tolerance specified) certified (affine) certified (interval) true errors

stress distribution (1e-10)
3.584e-11
4.147e-11

3.584e-11
4.147e-11

3.584e-11,
4.147e-11

sin-cosine system (1e-7)
6.689e-9
6.655e-9

6.689e-9
6.655e-9

6.689e-9
6.6545e-9

double pendulum (1e-13)
4.661e-15
6.409e-15

5.454e-15
7.449e-15

5.617e-17
9.927e-17

circle-parabola intersection (1e-13)
5.5510e-17
1.110e-16

1.110e-16
1.110e-16

8.0145e-51
5.373e-17

quadratic 2d system (1e-6)
2.570e-12
3.025e-09

3.326e-12
3.025e-9

2.192e-12
3.024e-9

turbine rotor (1e-12)

1.517e-13
1.707e-13
1.908e-14

1.523e-13
1.724e-13
1.955e-14

1.514e-13
1.703e-13
1.887e-14

quadratic 3d system (1e-10)

4.314e-16
5.997e-16
4.349e-16

6.795e-16
1.632e-15
5.127e-16

1.2134e-16
7.914e-17
7.441e-17

Table 8.2 – Comparison of errors for multivariate benchmarks. All numbers are rounded.
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Problem set affine interval
interval w/o

optimizations
quadruple
precision

unary problems 2.170ms 0.459ms 0.733ms 17.196ms
2D problems 2.779ms 0.984ms 1.240ms 4.446ms
3D problems 3.563ms 1.063ms 1.515ms 16.605ms

Table 8.3 – Average runtimes for of the benchmark problems from Tables 8.1 and 8.2. Averages
are taken over 1000 runs.

Problem affine interval

carbon gas state equation 0.272ms 0.084ms
double pendulum problem 0.784ms 0.228ms
turbine problem 2.643ms 0.644ms

degree 3 polynomial 0.116ms 0.044ms
quadratic 2d system 0.425ms 0.200ms
quadratic 3d system 0.943ms 0.460ms

Table 8.4 – Runtimes for individual problems. Averages are taken over 1000 runs.

for unary functions and 30% for our 3D problems over pure differentiation. On the other hand,

the table clearly shows that affine arithmetic is much less efficient than interval arithmetic

(factor 3-4.5 approx.), so should only be used if precision is of big importance.

We have also included the runtimes of re-computing the root(s) in quadruple precision. That is

we have used approximately 64 decimal digits for all calculations of the numerical method. The

runtimes illustrate that this approach for computing trustworthy results is clearly unsuitable

from the performance point of view, and would not actually provide any guarantees on errors

either, merely more confidence.

Table 8.4 illustrates the dependence of runtimes on the complexity of the problems. The first

three problems are those from our examples in section 8.2 and the second set is comprised

of relatively short polynomial equations. Clearly, runtimes depend both on the type of equa-

tions, transcendental functions being more expensive, as well as on the size of the system of

equations. It should be noted however, that the increases are clearly appropriate given the

increase of complexity of the problems.

8.5.2 Application to Optimization

The presented techniques are also applicable to verifying whether solutions to an optimization

problem are close enough to the true local solution. We illustrate this with a case study where

the goal is to estimate the abstract state of a power system through physical measurements.

Today’s power grids are more and more distributed, and instead of a few power plants that

inject energy into the system, many small producers, such as home owners with solar panels,
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contribute as well. This makes it challenging to provide a sufficient but only necessary amount

of power in the grid. It is thus necessary to always have a up-to-date measurements of the

current state.

In our case study, in collaboration with the Computer Communications and Applications

Laboratory 2 (LCA2) at EPFL [38], the system state is given by a vector xi , with i = 1. . .5,

and cannot be measured directly. Instead, it is possible to derive it from noisy physical

measurements in the network. The method used in our example for computing the most

likely state given the measurements is weighted least-squares. Instead of describing the

problem-specific details, we give here the final equation which is to be minized:

g (x1,x2, x3, x4, x5) = 1

ε1
(z1 −x1)2 + 1

ε2
(z2 −x2)2 + 1

ε3
(z3 −x3)2 + 1

ε4
(z4 −x4)2 + 1

ε5
(z5 −x5)2

+ 1

ε6

(
z6 − A13x4x1 cos(B13 −x5)− A23x4x2 cos(B23 +x3 −x5)− A33x2

4 cos(B33)
)2

+ 1

ε7

(
z7 + A13x4x1 sin(B13 −x5)+ A23x4x2 sin(B23 +x3 −x5)+ A33x2

4 sin(B33)
)2

z1, ..., z7 are measurements and ε1, ...ε5 = 10−10 and ε6,ε7 = 10−8 are the weights and capture

the noise on the measurements. The constant matrices A,B are given for each problem and

are determined by the network. Then, given a set of measurements and a solution to the

minimization problem computed from MATLAB, we want to check that it is indeed a solution.

Our framework as presented in this chapter is not applicable as-is for verifying optimization

problems. However, if we want to optimize a function f then any (local) optimum y has to

satisfy f ′(y) = 0. This problem fits nicely the capabilities of our system. For this example, we

have computed the partial derivative of g by hand, but our tool can be in principle straight-

forwardly extended to handle certification of optimization problems fully automatically. We

can then check the MATLAB-computed solution by calling our library:

val error = errorBound(List(dg1, dg2, dg3, dg4, dg5), computedState, tolerance)

where dg1, ..., dg5 are the partial derivatives of g . The error tolerance here is 10e −8. For

example, given the following set of measurements and the computed state:

val z1 = 1.000000000110817; val z2 = 0.998647460735060

val z3 = -0.001756247355916; val z4 = 0.998479207559061

val z5 = -0.001992728994125; val z6 = -0.017997984487926

val z7 = -0.005257996439913

val computedState = Array(1.000000000110817, 0.998647460656304,

-0.001756247550707, 0.998479207637711,

-0.001992728799334)
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our tool can certify that the computed state is indeed a solution to the optimization problem

within the tolerance and can narrow the errors on x even further:

error on

x1 [-4.4408921429095500e-16,4.4408921429095500e-16]

x2 [-2.9093174937193904e-13,2.9103233737160703e-13]

x3 [-2.7284766119102693e-13,2.7206444647703290e-13]

x4 [-2.9142440391968894e-13,2.9231758426003640e-13]

x5 [-2.7206423473908830e-13,2.7284788313395123e-13]

We believe that this shows that our technique is widely applicable and can be quite useful

when integrated with systems like MATLAB.

Conclusion

In this chapter we have shown how theorems from validated numerics can be adapted and

integrated into a programming language for certifying solutions of nonlinear equations. Fur-

thermore, by recognizing that self-correcting iterative methods require a different verification

approach than forward computations, we can provide a better adapted technique. Finally, this

chapter also shows another integration strategy for verification methods into a programming

language.
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In this chapter we would like to provide a representative (but certainly only partial overview)

of alternative approaches for the analysis, verification and synthesis of numerical programs.

Many of these have different goals than ours and we view them as complementary to our work.

9.1 Applicability and Portability

Our techniques and tools are implemented in Scala and for the analysis of Scala programs,

but are directly applicable and straight-forwardly portable to other programming languages

which support the IEEE 754 floating-point standard. Scala was chosen in part for its flexibility

in both writing application programs as well as the analysis tools themselves. That said, we do

not fundamentally rely on any feature that is not also available in most other programming

languages. In particular, the back-end of our tool Rosa can easily be changed to generate

code in another programming language, which is then compiled further by the appropriate

compiler.

Most programming languages support the IEEE 754 standard to the (limited) extent that our

analyses rely upon, including the more commonly used languages for numerical programs C

and Fortran. Our techniques further rely on compilers not re-arranging numerical computa-

tions, as this changes the roundoff error accumulation and propagation. This behavior can, in

general, be switched off via compiler flags.

9.2 Sound Finite-Precision Computations

A substantial amount of research has gone into proving two types of properties: absence

of runtime errors such as division-by-zero exceptions, as well as more expressive functional

properties for finite-precision code. Much of the work in this section reduces to or is concerned

with determining sound enclosures of mathematical expressions and is thus a prerequisite
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for an error analysis. We will review work that explicitly quantifies the difference between the

ideal real-valued computation and its finite- precision implementation in the next section.

Affine Arithmetic and Other Range Bounding Techniques

We have decided to use affine arithmetic because it seems to us to be a good compromise

between complexity and functionality. Our implementation of affine arithmetic can also

be used independently from the round-off error computation. Alternative implementations

include for example [148] which is the library from the original authors of affine arithmetic [52]

and [85]. The latter uses the Chebyshev approximation and is implemented in double floating-

point precision, which we both found to be insufficient for our purpose. It further does not

appear to use directed rounding, hence it is not clear if the results are entirely sound. Solutions

for the over-approximations committed by affine arithmetic have also been proposed. Zhang

et al. [152] for example, reduce over-approximations due to multiplication by repeatedly

refining the approximation until a desired accuracy is obtained. While the method provides a

possible solution to the over-approximation problem, it is also computationally expensive and

only applicable to multiplication. Another improvement over standard interval arithmetic is

generalized interval arithmetic [79] which is essentially an affine form but with interval valued

coefficients. The alternative implementations presented here are used to compute ranges

only, that is, as an alternative to interval arithmetic and not for numerical error computations.

Affine arithmetic and similar range computation techniques are often used in validated com-

putations, that is in computations where a sound enclosure of a function is required, given

possibly interval valued inputs. For example, other range-based methods are surveyed in [112]

in the context of plotting curves. The authors conclude that affine arithmetic has similar

accuracy as the other top rated methods. Shou et al. [147] extend affine arithmetic to keep

more correlations during multiplications, but the method is specific and only works for up to

three variables. Ershov et al. [59] present an interval library where elementary mathematical

functions are approximated by Chebyshev and Taylor series and may be a possible alternative

for our nonlinear approximations.

Approaches like interval and affine arithmetic are also often used together with a subdivision

scheme, which is also supported by Fluctuat [72]. By using an SMT solver which can capture

arbitrary correlations (within its supported theory), we would like to avoid subdivisions as

they inefficient, especially for larger numbers of variables.

Abstract Interpretation

Abstract interpretation [42] is an approach for computing sound enclosures, which is mostly

used in the context of verifying error freedom of (numerical) programs. Whereas validated

techniques as discussed previously are specialized for complex numerical computations,

abstract interpretation focuses more on handling control flow including branches and loops.
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The only work in this area that we are aware of that can also quantify round-off errors is

Fluctuat, which we have already reviewed throughout this thesis.

Several abstract domains for finite-precision computations exist which are sound with respect

to floating-point computations, that is they compute bounds on the ranges of variables which

can then be used to prove the absence of runtime exceptions [41, 36, 89, 117, 61]. They have

been successfully used in the verification of safety-critical software [22].

One difference to our work is that we do not define join and meet operations or widening.

While we do support an analysis with different paths that performs merging after conditionals,

this operation is simple as we only need to compute the convex union of intervals and loops

are handled by inductive reasoning, as our focus is on the numerical errors.

Interval Constraint Solving

Duracz and Konecny [57] present a framework and a solver that can prove tight functional

properties about floating-point numerical functions. The system generates verification condi-

tions which are similar to the ones which we described in subsection 5.2.1. The verification

task is reduced to an interval satisfaction problem, for which they present polynomial intervals,

which are polynomial lower and upper bounds enclosing the function one wants to approx-

imate. This allows them to automatically prove precise constraints. Makino and Berz [109]

present an alternative arithmetic based on Taylor Models for solving such constraints. It has

been so far successfully used for computing validated enclosures for solutions of differential

equations. These techniques may be applicable for solving our constraints as well, but it

remains to be seen how well they scale on roundoff error estimation problems. Furthermore,

the approach from [57] requires the postcondition to be present, whereas with our forward

computation we can compute the postcondition with error information automatically.

Solving interval constraints also plays a central role in symbolic execution, where path condi-

tions over floating-points have to be solved to determine feasibility of individual paths and for

finding concrete test inputs. Among the tools that are sound with respect to floating-point

arithmetic is the FPSE tool [28, 15] which solves floating-point constraints using interval con-

straint propagation. Borges et al. [26] present a constraint solving approach which combines a

meta-heuristic search with interval constraint propagation, where the interval solver is used

to provide an initial estimate for the seeds of the search. Lakhotia et al. [98] combine random

search and evolutionary techniques for the same purpose.

Decision Procedures

An alternative for solving floating-point constraints are dedicated decision procedures. Rüm-

mer and Wahl [136] formalize floating-point arithmetic for the SMT-LIB format. Bit-precise

constraints, however, become very large quickly. Brillout et al. [29] address this problem

by using a combination of over- and under-approximations. Haller et al. [78] present an
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alternative approach in combining interval constraint solving with a CDCL algorithm and

Gao et al. [67] present a decision procedure for nonlinear real arithmetic combining interval

constraint solving with an SMT solver for linear arithmetic. Anta et al. [9] prove fixed-point

constraints with a combination of bit vectors and reals. While these approach can check

ranges on finite-precision numerical variables, they do not handle round-off errors or other

uncertainties and cannot compute specifications automatically. Furthermore a combination

of theories is problematic, and we are not aware of an approach that is able to quantify the

deviation of finite-precision computations with respect to reals.

For solving real-valued constraints, several solvers exists which use interval constraint propa-

gation together with different strategies for nonlinear computations are iSAT3 [141], dReal [68]

and MetiTarski [7]. These tools and their techniques are possible alternatives for the Z3 solver

that we use as a back-end for our real-valued range computation.

9.3 Quantifying Accuracy

We now turn to work with is concerned with the errors of finite-precision computations. Be-

yond our analysis and Fluctuat’s abstract domain, different approaches have been developed

for estimating round-off errors. Fang et al. [60] use affine arithmetic with a special model

for floating-points to evaluate the difference between a reduced precision implementation

and normal floating-point implementation, but uses probabilistic bounding to tackle over-

approximations. Furthermore, this work only allows addition and multiplication. Ivancic

et al. [87] use bounded model checking together with interval arithmetic to statically detect

loss of accuracy in floating- point computations. While less scalable, this approach has the

benefit of being able to produce counter-examples. An et al. [8] use Dekker’s algorithms [54]

for exact addition and multiplication to determine and track the round-off error of one com-

putation by instrumenting the binary. The algorithms essentially rely on the non-associativity

of floating-point arithmetic to compute the round-off error at each computation step.

The idea of a separation of concerns has also been successfully used in [11]. Whereas we

separate the real-valued computation from the implementation, they separate reasoning about

the stability of control systems in the presence of uncertainties from the implementation.

Error Estimation in Numerical Analysis

Error analysis forms an important part of numerical analysis [30, 95], perhaps best demon-

strated by the fact that roundoff errors are usually discussed first, before any actual numerical

algorithms. Higham gives an extensive collection of stable numerical algorithms [83], however,

as he says “There is no simple recipe for designing numerically stable algorithms”. Stability is

usually proven or determined for each algorithm individually and manually and most work

has been done for linear algorithms. Furthermore, the analyses are, as far as we know, for the

most part qualitative. Our work is, in contrast, quantitative in nature and more general in
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the sense that we do not take into account specific (high-level, mathematical) properties of a

problem into account and also focus on nonlinear arithmetic computations. Our analysis is

thus more low-level, but (hopefully) more accurate and more automated. We have also placed

an emphasis on sound reasoning, which is important in the verification of safety-critical

systems, whereas error estimation in numerical analysis is often approximate itself. We believe

that these approaches are complementary and it would be very interesting to combine ideas

from numerical analysis with automated reasoning.

Fixed-point Arithmetic Compilation

Finite-precision round-off errors play an important role during the compilation process from

a real-valued expression to fixed-point arithmetic, which reduces to the allocation of the

number of integer bits for the variable ranges and the number of fractional bits for the ac-

curacy. To name a few (of many more), Lee et al. [101] use affine arithmetic for bit-width

optimization and also provides an overview of related approaches, both static and dynamic.

The approach by Mallik et al. [110] is simulation-based and and optimizes bit-widths to reduce

power consumption. Kinsman and Nicolici [94] employ a range refinement method based on

SMT solvers similar to ours to determine the number of integer bits. Pang et al. [128] combine

interval and affine arithmetic and an encoding of polynomials into pseudo-boolean functions.

Another approach uses automatic differentiation [65] to symbolically compute the sensitivity

of the outputs to the inputs. From this (unsound) approximation they derive bounds for the

number of fractional bits, and also apply this technique to determine the number of necessary

mantissa bits for floating-point arithmetic.

Controllers are also not unique and Majumdar et al. [108] perform a particle swarm opti-

mization to search for the best controller with respect to several performance criteria. The

evaluation of each controller takes into account implementation errors, which are translated

into a mixed integer arithmetic problem.

Testing

Testing is also a popular approach for checking the accuracy of floating-point programs. While

testing cannot provide guarantees, test input or counter-example generation can be very useful

when debugging an application. A common thread is to perturb the numerical computation

and observe the results in order to identify computations that are numerically unstable. The

CADNA library [90] does this by repeatedly running a computation and randomly choosing the

rounding mode for each. The hope is that if the results are consistent, then the computation is

stable. However, the stochastic approach does not provide rigorous results, as because round-

off errors are not always uniformly distributed (e.g. in loops). Tang et al. [149] test numerical

code for accuracy by perturbing low-order bits of values and rewriting the expressions. The

idea is to exaggerate initial errors and thus make inaccuracies more visible. Probabilistic

arithmetic [144] is a similar approach but it does the perturbation by using different rounding

modes.
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Yet other techniques exist whose goal is to detect inputs which cause large round-off errors

(instead of checking the numerical stability). Chiang et al. [37] developed a guided search

to find inputs which maximize errors. Benz et al. [18] propose testing produce to detect

accuracy problems by instrumenting code to perform a higher-precision computation side

by side with the regular computations. While these approaches are sound with respect to

floating-point arithmetic, they only generate or can check individual inputs and are thus not

able to verify or compute output ranges or their round-off errors. Paganelli and Ahrendt [127]

use a floating- point decision procedure to detect large differences in the result between

computations of different precisions. Using a floating-point decision procedure allows to

consider whole input ranges at once, instead of single inputs. However, since combining

different theories inside the solver is problematic, they can only compare two different floating-

point precision implementations and thus do not get sound error bounds with respect to a real-

valued semantics. Lam et al. [99] use instrumentation to detect cancellation by monitoring

exponent ranges and thus can identify possible places where significant digits may be lost. Bao

and Zhang [17] refine this approach by using a cancellation bit to track relative errors through

a computation. This bit is set or unset depending on the differences in exponents of the result

and its operands. A computation is then flagged as unstable, if a set cancellation bit reaches

a predicate such as a branch condition, in which case the user can choose to automatically

restart the computation in higher precision. None of these techniques can take into account

external numerical errors.

Theorem Proving

Automation in tools comes at the expense of accuracy. When one needs to prove very precise

properties about finite-precision codes, then theorem proving is a suitable avenue. Many such

tools nowadays include formalizations of floating-point arithmetic which makes the task easier

but still requires substantial interaction from an expert user. For example, the Gappa tool [103,

50] generates a proof from source code with specifications which is checkable by the interactive

theorem prover Coq [19]. It can reason about properties that can be reduced to reasoning

about ranges and errors and internally uses interval arithmetic. Gappa is useful for proving very

precise properties of specialized functions, such as software implementations of elementary

functions. A similar approach is taken by [13] which generates verification conditions that

are discharged by various theorem provers. Boldo and Marche [25] present a whole chain

of tools, including Coq and Gappa for proving numerical C programs correct. Boldo and

Nguyen [23] also take into account hardware features like fused-multiply instructions and

extended precision registers which produce different roundoff errors than a simple evaluation.

(The JVM currently does not use these features.) Theorem provers are also successfully and

now standardly being used to verify floating-point hardware [119, 140, 80]. Our approach

makes a different compromise on the accuracy vs. automation trade-off by being less accurate,

but automatic. Interactive theorem provers can be used as complements to our tool: if our

tool cannot provide sufficient accuracy, interactive tools can be employed by an expert user

on selected methods and the results can then used by our tool in the context of the overall
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program.

Our analysis (and most others’) for floating-point precisions relies on the hardware and

software conformance to the IEEE 754 standard. Furthermore, we rely on the compiler to not

have bugs or re-order arithmetic operations arbitrarily. CompCert is a verified C compiler and

Boldo et al. [24] present a recent extension of the proof floating-point arithmetic as well and

thus able to ensure that our assumptions are valid.

9.4 Synthesis

Ideally, we want to generate numerical programs which are correct by construction, also

with respect to error specifications. In this direction go specialized algorithms for computing

sums [138] or dot products [126] with better accuracy in floating-point. While extremely useful

for some applications, they are also very limited as they consider only one particular type

of computation. In this section reviews some other more general work which attempts to

improve finite-precision implementations in terms of accuracy or efficiency.

Rewriting

We are not the only ones who have exploited the non-associativity of finite-precision arith-

metic. CGPE [121] is a software tool that synthesizes fast and certified code for univariate and

bivariate polynomials in fixed-point arithmetic, optimized for a specific target architecture. In

contrast to our work, the optimization criterion is execution time and error bounds are merely

used to discard final candidate evaluation schemes that do not meet a basic error bound.

Martel [111] considers rewriting fixed-point arithmetic expressions. The accuracy measure

is the maximum number of bits required to hold the integral part. Ioualalen and Martel [86]

refine this idea by developing an abstract domain for representing an under-approximation of

mathematically equivalent expressions. Similarly to our fitness computation, their computa-

tion of accuracy of each expression uses affine arithmetic. They then use a local greedy search

to find expressions with a more accurate formulation in a floating-point implementation.

Their search is local in the sense that subexpressions are optimized without considering the

global error, and thus may exclude many possible expressions.

Eldib and Wang [58] presents a sketching-like approach to reduce the bit width of an fixed-

point expression by rewriting. Given a bit width target, a surrounding region is determined for

each AST node that may overflow and is then used in an SMT query which uses test inputs and

an AST skeleton to generate a better candidate program. Another call to SMT is used to ensure

the two programs are equivalent. In contrast to our work, which is general and considers the

global accuracy of the expression, this work only applies to linear programs and performs a

local optimization of the bit width.
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Approximate Computing

Rewriting an expression only changes the execution order, but keeps the same mathematical

formulation and also the same data type. For certain applications which can tolerate larger er-

rors, these requirements may be relaxed in favor of improved efficiency. Linderman et al. [103]

use affine arithmetic by considering the problem of reducing precision for performance rea-

sons. However, the resulting system still requires interactive effort. Rubio-Gonzales et al. [135]

use user-defined inputs as test vectors to determine approximate error bounds which are

then used to optimize program efficiency by choosing lower floating-point precision data

types for some variables. While our implementation is currently limited to a fixed precision

for the whole program, the techniques work, in principle, for mixed precision as well, and

could be used to certify programs returned from such optimization procedures. Langou et

al. [100] demonstrate that for some iterative linear algorithms it is sufficient to use double

floating-point precision for the residual and update computation only, and single precision

for the rest. If the condition number of the matrix is small enough, the results obtained are the

same as if double precision had been used throughout. This result is specific to iterative linear

algebra computations.

Schkufza et al. [143] go even a step further by modifying the computation itself. The paper

presents a guided search which explores randomly changing individual instructions of a func-

tion’s binary. A minimum accuracy, defined with respect to the original program, is ensured by

simulation. Zhu et al. [153] show an algorithm for optimizing approximate computations at a

higher level by exploring different (user-given and user-specified) implementations, in order

to minimize resource consumption while satisfying a probabilistic error specification. Baek

and Chilimbi [14] pursue a similar idea but determines the quality of different implementa-

tions by simulation with a user-given quality of service evaluation function. Westbrook and

Chaudhuri [150] propose a modular framework for quantitatively reasoning about different

approximations, with different metrics for different program constructs. We view our work

as complementary as it could be used to provide the (sound) specifications of alternative

implementations.

Approximations have also been proposed already at the hardware level [20], where one could

leverage lower power with occasionally wrong results. In this context, Carbin et al. [32] present

a static probabilistic analysis for verifying that a program running on unreliable hardware

conforms to a reliability specification.

9.5 Beyond Roundoff Errors

Discontinuity Errors

Ivancic et al.[87] combine abstract interpretation with model checking to check the stability of

programs, tracking one input at a time. Majumdar et al. [106] use concolic execution to find

two sets of inputs which maximize the difference in the outputs. These approach are based on
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testing, however, and cannot prove sound bounds. Majumdar and Saha [107] show programs

robust by considering all possible execution paths. The paths are obtained by a symbolic

execution engine and the robustness property is proven by showing that each pair of paths

does not differ more than a specified amount. While their approach can produce witnesses

for a violation of this property, this work only considers integer programs and relies entirely

on a solver. Chaudhuri et al. [35] develop a framework based on proof rules for showing

programs robust in the sense of k-Lipschitz continuity and Gazeau et al. [69] relax this strict

definition of robustness to programs with specified uncertainties and presents a framework for

proving while-loops with a particular structure robust. Neither of these approaches quantifies

numerical errors arising from the arithmetic computations. In our work, we quantify the

error and leave it up the user and its application to determine whether it is sufficiently small,

without considering notions such as robustness or continuity.

Shewchuk [146] presents techniques for arbitrary-precision and adaptive precision arithmetic,

aimed at geometric applications with the goal to decide geometric predicates robustly. Geo-

metric applications usually do not tolerate inaccuracies, for instance for deciding whether a

point is left or right of a line, many digits may be necessary. Our work is not suitable for such

accurate codes, instead we target applications, where we can statically prove that a certain

data type precision is sufficient and take advantage of efficient hardware during the execution.

Truncation Errors

One possible way to deal with truncation errors, is to use self-validated methods, which

return guaranteed enclosures of the solution. For example, [137] contains a fairly complete

overview and an implementation exists in the INTLAB library [139] for MATLAB. The main

difference to our work is that these methods compute the solution, using interval arithmetic

throughout the computation. In contrast, we use the underlying theorems as a verification

method that accepts solutions computed by an arbitrary method. This allows us to leverage

the generally good results and efficiency of numerical methods with sound results. Moreover,

our implementation performs part of the computation already at compile time, and is thus

more efficient.

In the case of systems of linear equations, one can use the linearity for optimizations [123]. The

algorithm remains an iterative solver though. Demmel et al. [55] give an iterative refinement

algorithm for linear systems that uses higher precision arithmetic to compute the residual.

The techniques cannot however be translated to nonlinear systems. Since we do not compute

residuals that suffer heavily from cancellation errors in our approach, we believe that the

additional cost of higher precision arithmetic is not warranted in order to achieve a slightly

better accuracy.
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Some may believe that round-off errors always distort results extensively so we should not

use floating-point or fixed-point arithmetic at all or, at the other extreme, that the errors are

very small and can thus be ignored. More likely, reality is somewhere in between. For many

applications, finite-precision arithmetic is perfectly adequate, if used carefully and with some

error consideration. Furthermore, there is a fundamental trade-off between many orthog-

onal or conflicting interests: efficiency vs. accuracy of the application, runtime overhead

vs. static analysis over-approximation in the verification approach, scalability of the analysis

technique vs. counter- example generation, etc. The best technique and implementation for

a given mathematical problem may lie anywhere on this spectrum and our goal was to help

programmers navigate this space.

We have presented tools and techniques for automated, sound and accurate numerical error

analysis and shown how these building blocks can be used for synthesis of numerical programs

with explicit error specifications.

On the technical side, we developed and studied in detail different approaches for sound range

computation and error quantification. We used and combined more traditional techniques for

sound computation (interval and affine arithmetic) with more recently developed nonlinear

solvers and investigated their utility and limits. We further showed how such an error compu-

tation can be joined with other techniques (genetic programming or validated numerics) to go

beyond just round-off error estimation and actively improve accuracy or quantify truncation

errors.

On the conceptual side, we argue that the current state of the art of programming numerical

codes is too low level for many applications and that today’s reasoning capabilities enable a

higher-level programming model which is semantically closer to the mathematical domain.

Recognizing that one approach does not fit all, we nonetheless explored different ways of

integrating sound error analysis into a programming language, both statically and dynamically.

We believe that our results are encouraging and that our work is a successful step towards our

goal of helping programmers write numerical codes that do what they are expected to do.
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We have mostly focused on round-off errors, although our propagation algorithms are oblivi-

ous to the type or the errors. Truncation errors are an integral part of numerical computations

and can often be actually (much) larger than round-off errors. Extending our work to addi-

tional sources of errors would require an appropriate extension of our specification language to

specifying the ‘intended’ meaning of a computation. Furthermore, we expect the automated

computation of such errors to pose new challenges.

Such an intended meaning of a computation that goes beyond the real-valued vs finite-

precision difference that we considered in this thesis is only one example of more functional

verification targets. Other properties of interest could be the convergence behavior of iterative

algorithms or the stability for example of numerical integration algorithms. We believe that our

separation of round-off errors from the ideal computation can help free functional verification

attempts from the low-level considerations. They can thus focus on the real-valued algorithms,

while our error estimates can (hopefully) validate the results also for the noisy finite-precision

implementation.

We have focused on a sound error analysis, but round-off (and other) errors do not always

reach the worst-case magnitude. Relaxing this requirement towards a probabilistic approach

would allow for tighter (and perhaps more realistic) error estimates. It would be interesting to

see if and how our techniques can be used in this context to provide confidence in the analysis’

results.

Most approximations that we have considered were inevitable; we can sometimes reduce

round-off errors, but not eliminate them entirely. The inherent error tolerance of many

applications allows us to go the other way, namely to do computations less accurately than

what is possible and save resources. Previous work considered optimizations on a rather low

level [143] or required the user to come up with candidate approximations [153, 14]. Another

possibility is to use the knowledge already available in numerical mathematics and combine it

with automated reasoning techniques to generate these candidates at a higher level and with

accuracy guarantees.

Finally, there is a lot of potential for synthesis of numerical codes. Our rewriting focused on

a rather small number of mathematical equivalences, which can be significantly extended,

also to other mathematical functions like square root and trigonometry. We can also imag-

ine to apply our techniques to the selection of different algorithms, with different accuracy

specifications. We see the challenge both in the huge search space as well as in the numerical

error estimation. In would be interesting to investigate, whether ‘rules of thumb’ exist which

can improve accuracy in general, even if not optimally. It may also not be possible to find one

expression that is optimal for all inputs, rather it may be necessary to consider several of them.

It will thus be necessary to develop techniques which determine the ranges of validity so an

overall error guarantee can be maintained.

There are still more than a few stones left unturned!
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