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Abstract. Aggregated roundoff errors caused by floating-point arith-
metic can make numerical code highly unreliable. Verified postconditions
for floating-point functions can guarantee the accuracy of their results
under specific preconditions on the function inputs, but how to systemati-
cally find an adequate precondition for a desired error bound has not been
explored so far. We present two novel techniques for automatically syn-
thesizing preconditions for floating-point functions that guarantee that
user-provided accuracy requirements are satisfied. Our evaluation on a
standard benchmark set shows that our approaches are complementary
and able to find accurate preconditions in reasonable time.

1 Introduction

Floating-point arithmetic as defined by the IEEE 754 standard [18] is widely used
to approximate real arithmetic in embedded or scientific computing applications.
While allowing highly efficient computations, the limited precision of floating-
point numbers introduces roundoff errors in every single operation [24]. The
aggregated errors in computations where such rounding happens repeatedly are
challenging to understand and predict intuitively, so that a variety of techniques
and tools [10,14,11,29,21,22] have been developed that bound worst-case roundoff
errors. These techniques assume a given floating-point precision, e.g. uniform
double precision and a precondition ψ(x̄) that bounds a function’s possibly multi-
variate parameters (x̄), and automatically compute an upper-bound ε on the
function result’s absolute roundoff error (ferr (x̄))4:

∀x̄. ψ(x̄)→ ferr (x̄) ≤ ε (1)

Answering the inverse question can be equally useful: given a desired round-
off error bound and precision, for which inputs will the computation’s result be
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at least this accurate? That is, given a postcondition specifying the error bound
for a floating-point function’s result, we want to infer a suitable precondition ψ.
Such preconditions can be useful for modular verification of larger floating-point
programs, or for efficient implementations: for inputs that satisfy the generated
precondition, the function can be evaluated using e.g. efficient double-precision
floating-point arithmetic, instead of a more accurate but significantly more ex-
pensive arbitrary-precision arithmetic [2] that would have to be used for the
remaining input space.

Outside the analysis of floating-point software, the automatic synthesis of
preconditions for software components is not a new field of study. Dijkstra’s
weakest precondition calculus [12], while not originally intended to be used for
specification inference, can generate weakest preconditions. However, when ap-
plied to a floating-point function, it creates a precondition that still contains the
floating-point arithmetic of the analyzed program and is, thus, not simpler than
the program itself. Recent approaches (targeting non-floating-point programs)
for specification inference [23,28,7,13] similarly do not attempt to abstract from
arithmetic operations and their inaccuracies.

This paper introduces two novel techniques for synthesizing sound and ab-
stract preconditions for floating-point functions. The inferred preconditions ψ(x̄)
are sound, by which we mean that they are guaranteed to satisfy Eq. (1) for a
user-specified error bound ε. The preconditions are abstract in the sense that
they do not contain any floating-point arithmetic operations.

We choose to synthesize interval-valued preconditions that bound each func-
tion parameter by a lower and an upper bound, i.e. x ∈ [a, b]. Such preconditions
avoid floating-point arithmetic, and thus roundoff errors, as evaluating them re-
quires only comparisons with constants. Our preconditions are relatively simple
on purpose to ensure compatibility with current sound roundoff verification tech-
niques that internally rely on interval-based abstractions. While more complex,
e.g. nonlinear, constraints may be more precise, they are not well-supported by
state-of-the-art verifiers and thus their benefit would be (currently) lost.

While we aim to synthesize weak preconditions that cover much of the in-
put space, weakest preconditions are not necessarily helpful in the context of
floating-point computations. The reason is that the space of inputs satisfying a
postcondition—especially one bounding the roundoff error—is in general highly
discontinuous due to the discrete nature of floating-point arithmetic. A weakest
precondition would thus consist of a large conjunction, with individual terms
often covering only a few values, and would hence not be practically useful.
Instead, we aim to find preconditions that balance precision (are as weak as
possible) and complexity (are simple and can be evaluated efficiently).

We are not aware of an existing approach for generating such sound floating-
point preconditions; we thus choose to introduce and explore two quite different
techniques that build on existing dynamic and static floating-point analyses in
a novel way. Both approaches start by dynamically sampling the analyzed func-
tion in order to find likely precondition candidates and then use a verification
backend to refine them until their soundness can be guaranteed. The first recur-
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sive subdivision approach does this by recursively subdividing the input space
into increasingly smaller cells, discarding those where sampling shows that the
postcondition is not satisfied for the contained inputs, and attempting to verify
the rest. Since such generated preconditions may still contain a large number
of discontinuous subdomains, we further present an optimization algorithm that
soundly approximates the preconditions with significantly simpler expressions
that can be evaluated more efficiently. The second classification tree approach
learns areas of inputs for which the postcondition holds based on a classification
tree learned from the dynamic samples, and iteratively refines verified precon-
ditions in these areas.

Our approaches guarantee soundness of the generated preconditions by veri-
fying each individual interval domain in the preconditions using a sound floating-
point roundoff error analyzer. Our approach is generic in the choice of this tool;
we integrate the floating-point verification framework Daisy [10].

We evaluate and compare our proposed approaches on benchmarks from
the standard floating-point benchmark suite FPBench [8] and show that the ap-
proaches are able to find adequate preconditions that (1) are syntactically simple
and cheap to evaluate and (2) are relatively weak, i.e. good approximations of
the weakest preconditions covering large areas of the input space, thus balancing
complexity and permissiveness. For most benchmarks, our approaches find pre-
conditions in under 20 minutes (and often significantly faster). We demonstrate
a possible application of our inferred preconditions for performance improve-
ments on a case study using a kernel from a real-world material sciences code
that inspired this work.

Contributions In summary, this paper makes the following contributions:

– Two independent novel inference algorithms that generate interval-valued
preconditions for floating-point functions. They are the first of their kind.

– An open-source implementation of both approaches as part of the Daisy
floating-point analysis framework.

– An extensive evaluation on 99 benchmarks and a case study showing the
effectiveness of our precondition inference.

2 Overview

Before explaining our approaches in detail, we provide a high-level overview
using an example. Consider the two-dimensional function himmilbeau from the
floating-point benchmark suite FPBench [8], introduced to evaluate optimization
algorithms [16], and defined as

f̂(x1, x2) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2 .

We denote by f̂ : Rn → R the ideal, real-valued specification of the func-
tion that a developer may want to compute (where n is the number of function
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arguments, n = 2 for our example). While such a function can in principle be im-
plemented exactly, e.g. using rational arithmetic, such an evaluation is generally
slow. Hence, in practice, the function would be implemented in finite precision.
In this paper, we consider double-precision (64 bit) IEEE 754 [18] floating-point
arithmetic, which is one of the most commonly used finite precisions (though
our approach generalizes to other floating-point precisions as well). We denote
this finite-precision implementation by f : Fn → F.

When evaluating f , each computed intermediate value has to be potentially
rounded to a value that is representable in finite precision, introducing a roundoff
error. While each roundoff error individually is (usually) small, the errors propa-
gate and accumulate during the computation, resulting in potentially large errors
on a function’s result [20]. It is thus important to be able to make statements

about this error, for instance as an absolute error: ferr (x̄) = |f̂(x̄)−f(x̄)|, x̄ ∈ Fn,
where we assume that x̄ are ‘finite’ values and not one of the Not-a-Number or
Infinity special floating-point values. Our approach assumes and proves that
all computations remain within the number ranges of the chosen floating-point
precision and that special values never occur during expression evaluation.

In this paper, we aim to synthesize an interval-valued precondition ψ(x̄) that
satisfies Eq. (1) (∀x̄. ψ(x̄)→ ferr (x̄) ≤ ε) where ψ is of the form:

m∨
k=1

n∧
i=1

xi ∈ [ak,i, bk,i]

I.e. such a precondition represents the (set-theoretic) union of m domains of
dimension n. To obtain a precondition that can be efficiently checked, we aim
to keep m small (< 10), while the precondition should nonetheless be as weak
as possible, i.e. cover as much of the input space as possible.

Our precondition inference starts from an initial search area which may be
either specified by the user, be defined, for example, by an embedded sensor
output domain, or be computed by a static analysis on the call site(s) of f . For
our himmilbeau example, we assume x1, x2 ∈ [−20, 20] as the search area, and
ε = 1.4211e-12 as the target error bound.

In the first step, our approach samples inputs from the initial search area at
random, and evaluates the function f on each input in double precision arith-
metic and approximates its corresponding specification f̂ using 128 bit arbitrary-
precision arithmetic [2]. Comparing the results from the double- and higher-
precision evaluations gives us an estimate of the roundoff error. We use this
estimate to mark each input as valid or invalid, i.e. as satisfying or violating
the postcondition, respectively. Fig. 1 shows the valid and invalid samples for
our running example in blue and red, respectively. Note that the error bounds
obtained from these samples do not have to be sound, as they are used only for
guiding the precondition search; our technique will use static analysis to verify
each precondition candidate soundly. Furthermore, the sampling also does not
need to identify the exact bounds between valid and invalid samples. As Fig. 1
indicates, such bounds would lead to highly discontinuous preconditions that
would be of limited practical use.
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(a) Precondition with subdivision (b) Optimized precondition

Fig. 1: The sampled himmilbeau function. Blue and red points indicate valid and
invalid input values, respectively. The rectangles show the inferred preconditions.

Starting from these samples, we explore two techniques. First, we use inter-
val subdivision to subdivide the initial search area into equal interval regions
(domains such that every dimension is bounded by an interval), and then check
each region individually using sound static analysis for whether it is a valid part
of the precondition. Fig. 1a shows the generated precondition in green. To reduce
the number of regions in the precondition for a simpler and more efficient pre-
condition, we propose an optimization algorithm that approximates the initial
verified precondition with fewer, larger regions; the result of this optimization is
shown in Fig. 1b.

Subdivision may be inefficient when only a small part of the initial search
area constitutes a valid precondition. We thus further explore an approach based
on classification tree learning that starts from the valid and invalid samples and
learns an initial candidate precondition, or a set of candidates if the space of
valid samples is disjoint. Then, we again use static error verification to search
for sound preconditions. Fig. 2a shows the generated precondition in green.

Ultimately, an inferred precondition allows us to refactor floating-point pro-
grams such that they use computations in floats if the result is known to be
accurate, and resort to high-precision libraries otherwise. For example, a C-
implementation of the himmilbeau example using the precondition from Fig. 1b,
achieves a 8.6% speed-up against a pure high-precision implementation (on ran-
domly chosen inputs from the range [−20, 20]). The precondition that triggers
the optimization covers 11.5% of the input domain, hence the size of a precon-
dition nearly directly translates to performance improvements.

The inferred precondition will in general be stronger than the weakest pos-
sible precondition, i.e. our inferred preconditions do not cover all of the blue
points in Fig. 1 and Fig. 2. There are several reasons: The verification backend
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(a) Precondition with classification tree (b) Precondition for range postcondition

Fig. 2: Inferred preconditions for himmilbeau using the classification tree ap-
proach for the error postcondition, and subdivision for the range postcondition.

has to rely on abstractions and can thus not always verify a valid precondition
candidate. Furthermore, due to runtime considerations of our algorithm, the
approaches cannot operate on arbitrarily detailed intervals.

Finally, while we discussed our precondition inference for postconditions that
target an error bound, our approach equally works for postconditions that specify
a target range, e.g. that require that the value of the result of our himmilbeau

function is within given bounds (f(x̄) ∈ [−100, 100]). We show the precondition
inferred for this case using subdivision and subsequent optimization in Fig. 2b.

3 Precondition Inference by Subdivision

The first approach that we propose finds preconditions by recursively splitting
the initial search area along the parameter axes until it finds interval domains
for which the verification backend is able to prove that the target postcondition
holds for all inputs. This approach is inspired by interval subdivision that is
being used, for example, in roundoff error bound analysis to reduce the amount
of over-approximations due to abstractions.

However, a naive application of subdivision for precondition inference is not
practical. Each parameter’s interval has to be subdivided several times in order
to find verifiable preconditions, leading to a large number of regions especially
for multi-variate functions. If we then run the relatively expensive verification
procedure on each of these regions, the overall running time quickly becomes
unreasonable. Furthermore, a precondition consisting of a large number of small
interval regions is inefficient to evaluate and unwieldy. We thus combine static
and dynamic verification (Sec. 3.1), and optimize the generated preconditions to
yield more compact representations (Sec. 3.2).
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Fig. 3: Illustration of recursive subdivision in two dimensions.

Algorithm 1 Recursive Subdivision

1: given arithmetic expression expr , postcondition post
2: procedure extractPre(node)
3: if node ∈ valid then
4: if verify(node.region, expr, post) then
5: return node.region

6: if node is a leaf then return ∅
7: else return extractPre(n.left) ∪ extractPre(n.right)

3.1 Extracting a Verified Precondition from Subdivisions

Our approach starts by building a binary tree, where each node represents an
interval region in the search area. The tree is generated by recursively splitting
intervals along one parameter axis into two equally sized intervals (called left
and right), splitting along each parameter axis in turn. The top part of Fig. 3
illustrates this subdivision for a two-dimensional example and with a maximum
subdivision depth of 4. From left to right, the nodes are repeatedly subdivided
until there are 16 leaf nodes.

Our algorithm then runs dynamic sampling (as described in Sec. 2) for each
leaf node l. A node l is marked as valid (blue check marks in Fig. 3) if the post-
condition is satisfied for all samples, and as invalid (red cross marks) otherwise.
The middle part of Fig. 3 shows how these markers ascend to the root of the
tree: An inner node i is marked valid if and only if both of its children are valid:
i ∈ valid ↔ (i .left ∈ valid ∧ i .right ∈ valid).

Next, our approach performs a recursive descent (shown in Algorithm 1) from
the root node to extract the precondition. The verification backend is queried
(verify in the algorithm) to verify that intervals are valid (sound) preconditions
for all inputs in a given region. As a heurisitic, verification is attempted as close
to the root of the tree as possible, as thus a single verification attempt can verify
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Fig. 4: Approximating generated preconditions.

a larger volume. On the other hand, the verification is more likely to fail, which
may increase running time of the algorithm. Verification is futile and thus not
attempted for an invalid node (node 6∈ valid). In this case, or if the verification
back-end fails to verify, the procedure descends further down the tree.

The bottom part of Fig. 3 illustrates this procedure. No verification is at-
tempted on the root node and its first degree children as they are invalid. Ver-
ification is attempted for the two valid grandchild nodes of the root that were
marked with a blue check mark. For the lower right node verification is success-
ful, so there is no need to further descend to its child nodes. Verification fails for
the left one, which means it has to be subdivided again, like its two remaining
sibling nodes. Sometimes subdivision is needed to verify a region even if all of it
is ultimately verifiable, such as the lower left region in the last subdivision step.
The reason for this is that subdivision generally reduces over-approximations
due to the abstractions that the sound verification procedure relies on, and thus
often allows to compute tighter error bounds [10].

The maximum subdivision depth controls the precision of the approach.
With larger depth, the generated preconditions can have a larger volume, i.e. be
weaker, but this comes at the cost of a longer running time of the algorithm.

The union of all valid regions extracted from the tree is returned as a pre-
condition. This precondition is sound, since each region has been verified by a
sound roundoff error analysis.

3.2 Precondition Optimization

Depending on the subdivision depth, the number of individual regions in a gen-
erated precondition can easily reach into the thousands. We observed that one
can often approximate the result with significantly fewer regions, while only
marginally reducing their volume. Fig. 4 shows an example precondition gen-
erated by subdivision on the left, and the optimized precondition on the right.
The precondition on the right needs only two regions instead of 8, and covers
most of the originally generated precondition and is thus only slightly stronger.

Note that simply picking the largest individual interval regions from the gen-
erated precondition is in general insufficient: larger regions may be found within
the verified area by composing parts of different intervals into larger ones. While
one could in principle use simplification algorithms inside constraint solvers for
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x2 ≤ 4. 3

x2 ≤ - 4. 0

x2 ≤ - 4. 6 x1 ≤ 4. 7

x1 ≤ - 2. 9 x1 ≤ - 4. 3

x2 ≤ 1. 2x1 ≤ - 4. 8

(a) Positive/negative decisions have solid/dashed
lines. Leaves can be valid (3) or invalid (7).

(x1 ∈ [−4.8,−2.9] ∧
x2 ∈ [−4.6,−4.0])

∨
(x1 ∈ [−4.2, 4.7] ∧
x2 ∈ [1.2, 4.3])

(b) Precondition candidate.

Fig. 5: A sample classification tree and the extracted precondition candidate

this task, such algorithms are not targeting our use-case, i.e the smallest formula
that covers the biggest valid region.

Thus, we propose an optimization that starts by identifying the interval re-
gion that covers the largest verified area and that possibly (partially) covers
several interval regions from the originally generated precondition. It then it-
eratively repeats this process and keeps adding regions that provide the most
additional coverage. Since our algorithm is greedy, it is not guaranteed to find
an optimal solution, but our experiments have shown that the approximation is
very decent even for small numbers of representing regions. Since only regions
covering verified areas are added, the optimized precondition is sound. This op-
timization is also fast compared to the rest of the procedure, since it does not
run roundoff verification.

This precondition optimization step can be applied on preconditions obtained
from both inferences approaches (recursive subdivision and the refinement ap-
proach from the upcoming section), but the effects are more pronounced for the
subdivision approach as it usually produces results with more individual regions.

4 Precondition Inference by Decision Tree Learning

Our second precondition inference technique leverages the dynamic samples in
a different way: it uses them to generate initial precondition candidates using
decision tree learning [4], a well-known algorithm in supervised machine learning.
These candidates are subsequently refined to obtain sound preconditions. We
consider two such refinements in Sec. 4.2 and Sec. 4.3.

4.1 Extracting Candidates from a Classification Tree

First, our algorithm samples the search area as described in Sec. 2, and marks
each sample as valid or invalid depending on whether or not it satisfies the
postcondition. The marked or ‘classified’ samples serve as the training data to
train a classification tree (CT) using decision tree learning. A CT is a binary
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(a) (b) (c)

Fig. 6: Illustration of a single candidate (blue rectangle) refinement

tree in which the inner nodes are tests on the data and each leaf is labeled with
a category. To classify an individual input, one follows the path given by the
tests in the CT and obtains the label of the reached leaf as an answer.

We use CTs to find a simple classification that separates the valid from the
invalid samples. Fig. 5a shows such a CT for our example himmilbeau function.
Note that all tests in the CT are comparisons between a variable and a con-
stant. From this CT, we can extract representations for the category valid by
enumerating all paths from the root to valid leaves and collect (i.e. conjoin) all
conditions (resp. their negation for negative edges). Due to the choice of simple
comparisons with constants for tests, the result can be expressed as bounds on
the input variables, which describes a set of interval regions. Fig. 5b shows the
(simplified) precondition candidates extracted from Fig. 5a.

4.2 Refining Candidates by Growing Regions

Heuristics are applied when training CTs, and the classification has only been
obtained from a set of few random samples. It is hence very likely that the
candidates still contain inputs for which the desired postcondition does not hold.
They need to be processed to obtain valid preconditions.

Fig. 6 illustrates our first candidate refinement process. The outer blue square
represents the initial candidate. The verification backend is used to identify
regions within it that verifiably are preconditions, shown as filled green rectangles
in the figure. First, a small initial region in the center of the candidate is grown as
much as possible without losing verifiability (Fig. 6a). When the maximal region
has been found, additional precondition regions are inferred along the boundary
of the region (Fig. 6b). To this end, extension candidates (two examples are
shown as red rectangles) are identified as the largest possible regions to add
in particular directions. The mentioned growing mechanism infers maximum
regions within the extension candidates. For every added region, the extension
process is repeated (Fig. 6c) until a maximum refinement depth has been reached.

Algorithm 2 shows the pseudocode procedure refineCandidate returning
a verified precondition for a candidate region. The algorithm keeps a set M of
extension candidates and searches for the largest verifiable region inside each
extension candidate using binScaleSearch (binary search on interval regions)
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Algorithm 2 Candidate Refinement

1: given arithmetic expression expr , postcondition post , binary search depth d
2: procedure refineCandidate(region)
3: result ← ∅
4: M ← {(center(region), region)}
5: while M 6= ∅ do
6: choose (min,max ) ∈M and remove
7: verified ← binScaleSearch(min,max )
8: if verified 6= ∅ then
9: result ← result ∪ {verified}

10: M ←M ∪ genExtensionCandidates(verified ,max )

11: return result

which invokes the verification backend. The procedure center computes the
center of a region used as the starting point for growing an initial solution, and
genExtensionCandidates produces new extensions candidates (in form of
min/max pairs of regions) to be explored.

In the implementation, the set M is realized as a priority queue favoring
potential additions far from the original candidate’s border that can thus grow
easily, and the number of iterations is bounded by a configurable parameter.

4.3 Refining Candidates by Recursive Subdivision

Instead of this refinement approach for precondition candidates, the subdivision
technique from Sec. 3 can alternatively also be applied to obtain valid precondi-
tions from candidates. The candidate production using a CT then serves as a first
step narrowing an initial search region to a smaller region in which subdivision
can operate productively, in particular because a finer mesh can be applied on
the interesting regions, which is better for verification with the backend verifier.

5 Evaluation

Implementation We implemented both precondition inference approaches in the
open-source tool Daisy [10], building on the static range and error analyses that
Daisy provides. In particular, we use Daisy’s interval analysis for computing real-
valued ranges and affine arithmetic for computing roundoff error bounds. We use
the DecisionTree class from the Smile library [1] for classification tree learning.
Empirically, we have identified the following default parameters that produce
good results on the benchmarks on average, while not being prohibitive for larger
benchmarks: we limit the maximum depth for classification tree learning to 8 and
the depth for binary search during refinement in the classification tree approach
to 10. When combining classification tree learning with subdivision, we limit the
decision tree depth at 12. We use 8192 samples for classification tree learning
and 16 samples per subdivided region for our subdivision approach.
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Benchmarks We evaluate our precondition inference approaches on benchmarks
from the benchmark suite FPBench [8] that is widely used in the floating-point
research community. Each benchmark consists of an arithmetic expression and
typically comes with a precondition specifying the input domain of the expres-
sion. For a few benchmarks where no input domain is given, we add one manually.
For our evaluation, we require a postcondition to be given that specifies a target
error bound or a range. Since these are not provided by FPBench as-is, we gen-
erate them for our experiments as follows. We compute error bounds and result
ranges based on the existing original input domains as specified in FPBench,
and use these as two separate target postconditions. We exclude benchmarks for
which Daisy is not able to compute errors or ranges, e.g. because they contain
conditional statements. In total, we generate a set of 99 benchmarks with post-
conditions specifying an error bound, and a separate set of 99 benchmarks with
postconditions specifying a target range, with the following dimensionalities:

dimension 1 2 3 4 6 8 9

# benchmarks 33 29 16 4 12 1 4

Baseline In the absence of existing tools for floating-point precondition inference
or the ground truth5, we compare the preconditions inferred by our approaches
against the original preconditions specified in FPBench. Indeed, the original
precondition from FPBench is—by construction—a valid precondition.

We measure the quality of an inferred precondition as a relative volume, i.e.
the ratio of the volume of the generated precondition over the volume of the orig-
inal precondition. A relative volume greater than one is obtained if the original
domain specification is strong and the approaches discover valid preconditions
beyond the original specification. For many benchmarks, however, obtaining a
relative volume close to one is close to the optimal result. (Measuring the abso-
lute volumes is not meaningful as they are highly benchmark dependent.)

Setup Our techniques rely on an initial search area provided by the user. While
it may be convenient if our algorithms considered an unbounded initial space,
i.e. all possible floating-point values, this is practically infeasible. The valid pre-
condition typically covers only a very small part of this ‘unbounded’ domain,
and it would thus be computationally very expensive to search for.

For our evaluation, we consider two sets of initial search areas: We use the
original domain specified in FPBench scaled uniformly around their centers to
contain 100 times the original volume, and we use a large fixed initial domain
for all benchmarks bounding all input arguments in [−108, 108]. For both initial
search areas, it is unlikely that the entire area would be a valid precondition.

Comparison of Approaches Simply comparing the relative volume of the precon-
ditions does not consider that each approach would be able to produce bigger
preconditions by investing more computational effort. Conversely, the running

5 The exact ground truth would be highly discontinuous, and would require sampling
of all floating-point inputs, which is infeasible for double precision.
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precondition: error range

TO fail best TO fail best

scaled search area

subdivision 14 2 67 10 2 56

tree refinem. 6 3 22 9 3 24

hybrid 6 2 11 5 9 23

fixed search area

subdivision 333 57 22 312 80 8

tree refinem. 344 73 4 319 81 4

hybrid 344 56 8 320 79 3

Fig. 7: Summary statistics
Fig. 8: Cactus plot evaluating the
precondition optimization

times cannot be compared in isolation. Thus, we compare the relative volumes
of generated preconditions per invested time6. We use a timeout of 20 minutes
for each benchmark and parameter setting.

We consider our effectively three approaches: subdivision, tree refinement
(with growing candidates), and tree refinement with subdivision, that we call
hybrid for the sake of this evaluation. For this comparison, we initially do not
use the precondition optimization from Sec. 3.2, and evaluate it separately. We
observe that for the subdivision and the hybrid approach, the maximum depth
of the subdivision tree significantly affects the running time of the algorithm. For
the tree refinement, the most relevant parameter is the number of refinement can-
didates considered for the growing-based refinement. We thus vary these parame-
ters and keep all others to the default values given in Sec. 5. In total, we run 3762
experiments using the scaled and 1782 experiments using the fixed search area.

Fig. 7 summarizes our results. ‘TO’ counts the number of times an individual
run timed out. ‘Fail’ means that no precondition was found by a search strategy
for any of the tested parameters. ‘Best’ counts the number of benchmarks for
which an approach was able to find the best (weakest) precondition (with any
parameter setting); when the numbers do not add up to 99, it is due to ties.

Clearly, our precondition inference is more effective for the scaled search area
benchmarks; it is able to find preconditions in nearly all runs. However, it is
able to find some preconditions even for the very large area, where the verifiable
regions are often vanishingly small. Also, we observe that no one approach is
universally better than the others, as each is best on some set of benchmarks.

Fig. 9 visualizes the relative volumes of generated preconditions by the dif-
ferent approaches per running time of the algorithm, for benchmarks where the
postconditions bound the roundoff error and for the scaled input search ar-
eas. Each point corresponds to one parameter setting. Fig. 9a averages over all
benchmarks, whereas Fig. 9b averages only over benchmarks where the gener-

6 We ran all experiments on a Mac mini with an 6-core Intel i5 processor at 3 GHz
with 16 GB RAM running macOS Catalina.
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(a) Average over all benchmarks
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(b) Average for small preconditions

Fig. 9: Comparison of approaches without optimization: average relative volume
per time (seconds) for error postconditions and 100x search area.
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(b) Average for small preconditions

Fig. 10: Comparison of approaches without optimization: average relative volume
per time (seconds) for range postconditions and 100x search area.

ated precondition was small, i.e. at most 1.2 times the original precondition. We
show the analogous plots for the range postconditions in Fig. 10.

We observe that averaged over all benchmarks, the subdivision and hybrid
approaches perform significantly better than the tree refinement approach. In
fact, our techniques are able to identify preconditions that are, on average, sig-
nificantly larger than the original precondition. If we consider only those 33
benchmarks, where only a relative small precondition was generated, we see
that tree refinement shows the, on average, best benefit. For our range bench-
marks (Fig. 10), we observed on average a slight benefit of the hybrid approach
for small preconditions. Note that even when ‘small’ preconditions are generated,
they nearly cover the entire input search area, i.e. our precondition inference is
able to recover most of the original preconditions.
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Precondition Optimization Finally, we evaluate the effectiveness of the precondi-
tion optimization on the subdivision and hybrid approach (we have not observed
the optimization to be particularly useful for tree refinement). For this evalua-
tion, we fix a particular parameter setting that achieves a good trade-off between
relative volume of inferred preconditions and running time of inference. Then
we vary the number of target regions that the optimization should produce. On
average, the preconditions generated for this experiment consisted of 120 dis-
tinct regions before optimization. For each run, we compute the coverage of the
optimized precondition, i.e. the ratio of the optimized over the non-optimized
inferred precondition. Fig. 8 visualizes the results of this experiment as a cactus
plot where we sort the runs by coverage. For example, the value 0.27 for 1 re-
gion at the 20th percentile means that in 80% of the runs, the coverage of the
optimized precondition was at least 0.27. As expected, the more regions are al-
lowed, the better the coverage of the optimized preconditions becomes. Overall,
we see that our inference with optimization is able to generate relatively simple
preconditions (i.e. with just a few regions) in reasonable time that nonetheless
cover large parts of the verifiable area for many of the benchmarks.

Case Study We demonstrate the benefits of our precondition inference on a prac-
tical problem that inspired this work. We consider the 9-dimensional function
to calculate the scalar triple product α · (β × γ) of three 3-dimensional vectors
α, β, γ ∈ R3, based on the requirements of an assumed use case: each parameter
will be within a range of [−1337, 1337], and we require the error of the result to
be at most 3 · 10−6. This use case arose in a convex hull algorithm for scientific
computing in material sciences.

Running the recursive subdivision approach for this expression with a sub-
division depth of 14 and 262144 samples yields the following results: In roughly
13 minutes, the approach produces a precondition that covers about 67 percent
of the search area and consists of 4608 individual intervals. In another 112 sec-
onds, the optimization algorithm produces a precondition consisting of only two
intervals which together cover 51% of the verified area and 34% of the search
area. Using this optimized precondition, we can create a hybrid implementa-
tion of the original function, which decides whether to use a (exact) rational or
floating-point version dynamically. Even with the added overhead from checking
the precondition, the required runtime reduces from 17.13s for a purely rational
implementation to 10.77s for the hybrid implementation for running the function
100000 times with random inputs from the input space. A similar speedup can
be observed when using a higher precision floating-point implementation instead
of an exact rational implementation in case the precondition does not hold.

6 Related Work

The precondition synthesis approaches presented in this work rely on state-of-
the-art floating-point verification and analysis tools to verify precondition can-
didates and guarantee their soundness. While we have used the Daisy framework
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[10] as a verification backend, any tool able to calculate sound bounds for errors
or result ranges of floating-point functions could be used instead: Fluctuat [14],
Gappa [11], FPTaylor [29], Real2Float [21] and PRECiSA [22].

We are not aware of an existing technique that can generate sound precon-
ditions for floating-point functions. The closest related techniques are optimiza-
tions that identify certain parts of the input domain, for which a rewriting of
the input program results in a smaller roundoff error [26,32,30]. These rewrit-
ings are based on real-valued identities, leveraging the fact that floating-point
arithmetic is e.g. not associative, or polynomial approximations. The split of the
input domain can be viewed as a kind of precondition, however, the goal and
guarantees provided are very different. The aim is to identify and repair large
roundoff errors, whereas our approach tries to identify the input domain with
reasonable errors. Furthermore, all of the techniques rely on dynamic analysis
and thus do not provide soundness guarantees.

Dynamic analysis is frequently being used to estimate the magnitude of
roundoff errors [3], and several works have developed a targeted search towards
inputs that cause particularly large errors [31,6,33], in order to identify worst-
case errors. Our precondition inference combines dynamic and static analysis in
a novel way in that the dynamic analysis serves a pre-processing step to explore
the input domain. As such, the goal of our dynamic analysis is different from ex-
isting ones, as we want it to explore the input domain evenly, instead of focusing
on a (possibly small) part of the input domain with large errors.

One possible use of our inferred preconditions is to be able to generate im-
plementations that choose an efficient floating-point precision whenever possi-
ble, and otherwise use some ‘safe’ higher precision. In that, our approach is
related to mixed-precision tuning techniques that mostly focus on implementa-
tions that mix single, double and quad floating-point precision. Some of these
use dynamic analysis to estimate errors and thus do not provide sound guar-
antees [25,19,17,15], and others use static analysis with accuracy guarantees,
but less scalability [5,9]. Mixed-precision tuning generally works well when the
target error bounds are close to the error bounds of uniform-precision imple-
mentations [9,27]. We consider mixed-precision tuning complementary to our
precondition inference; for instance, preconditions generated by our approaches
could be used as a starting-point for mixed-precision tuning.

7 Conclusion

We have presented the first precondition inference techniques from floating-point
accuracy and range postconditions, using a combination of dynamic and static
analysis. Each of the three approaches that we explored generate good results
from reasonably sized initial search areas with acceptable computational effort
and have different strengths and weaknesses; neither approach is universally
better than the others. One of the main challenges for future work is to improve
the identification of preconditions when the initial search areas are very large,
which we have identified as a particular challenge.



Inferring Interval-Valued Floating-Point Preconditions 17

References

1. Smile - Statistical Machine Intelligence and Learning Engine, https://haifengl.
github.io/

2. The GNU MPFR Library (2020), https://www.mpfr.org/
3. Benz, F., Hildebrandt, A., Hack, S.: A Dynamic Program Analysis to Find

Floating-Point Accuracy Problems. In: Programming Language Design and Im-
plementation (PLDI) (2012). https://doi.org/10.1145/2254064.2254118

4. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. CRC press (1984)

5. Chiang, W.F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
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