
Modular Optimization-Based Roundoff Error
Analysis of Floating-Point Programs

Rosa Abbasi1[0000−0003−1495−3470] and Eva Darulova2[0000−0002−6848−3163](B)

1 MPI-SWS, Kaiserslautern and Saarbrücken, Germany rosaabbasi@mpi-sws.org
2 Uppsala University, Uppsala, Sweden eva.darulova@it.uu.se

Abstract. Modular static program analyses improve over global whole-
program analyses in terms of scalability at a tradeoff with analysis
accuracy. This tradeoff has to-date not been explored in the context of
sound floating-point roundoff error analyses; available analyses computing
guaranteed absolute error bounds effectively consider only monolithic
straight-line code. This paper extends the roundoff error analysis based
on symbolic Taylor error expressions to non-recursive procedural floating-
point programs. Our analysis achieves modularity and at the same time
reasonable accuracy by automatically computing abstract procedure
summaries that are a function of the input parameters. We show how
to effectively use first-order Taylor approximations to compute precise
procedure summaries, and how to integrate these to obtain end-to-end
roundoff error bounds. Our evaluation shows that compared to an inlining
of procedure calls, our modular analysis is significantly faster, while
nonetheless mostly computing relatively tight error bounds.

Keywords: modular verification · floating-point arithmetic · roundoff
error · Taylor approximation.

1 Introduction

One of the main challenges of automated static program analysis is to strike a
suitable trade-off between analysis accuracy and performance [6]. This trade-off
is inevitable, as a certain amount of abstraction and thus over-approximation
is necessary to make an analysis feasible for unbounded (or very large) input
domains. There are typically different ways to introduce abstractions; for instance
by considering abstract domains that are more or less accurate [6,17,22], or in
the context of procedural code, by abstracting procedure calls by summaries or
specifications to obtain a modular analysis [8].

2 Rosa Abbasi and Eva Darulova(B)

A modular analysis allows each procedure to be analyzed independently once,
regardless of how often it is being called in an application, rather than being
re-analyzed in possibly only slightly different contexts at every call site. This saves
analysis time and thus increases the scalability of the analysis at the expense of
some loss of accuracy: the procedure summaries need to abstract over different
calling contexts.

This paper presents a modular roundoff error analysis for non-recursive
procedural floating-point programs without conditional branches. Our approach
extends the roundoff error analysis first introduced in the FPTaylor tool [27] that
is based on symbolic Taylor expressions and global optimization and that has
been shown to produce tight error bounds for straight-line arithmetic expressions.
Our analysis first computes, for each procedure separately, error specifications
that provide an abstraction of the function’s behavior as a function of the input
parameters. In a second step, our analysis instantiates the error specifications at
the call sites to compute an overall roundoff error bound for each procedure.

The main challenge is to achieve a practically useful tradeoff between analysis
accuracy and performance. A naive, albeit simple, approach would simply compute
the worst-case roundoff error for each procedure as a constant, and would use
this constant as the error at each call site. This approach is, however, particularly
suboptimal for a roundoff error analysis, because roundoff errors depend on the
magnitude of arguments. For reasonable analysis accuracy, it is thus crucial that
the error specifications are parametric in the procedure’s input parameters. At
the same time, the error specifications need to introduce some abstraction as we
otherwise end up re-analyzing each procedure at each call site.

We achieve this balance by computing error specifications that soundly over-
approximate roundoff errors using first-order Taylor approximations separately
for propagation of input and roundoff errors. By keeping first-order terms of both
approximations unevaluated, we obtain parametric procedure summaries, and by
eagerly evaluating higher-order terms we achieve abstraction that has a relatively
small impact on accuracy.

Available sound floating-point roundoff error analyses have largely focused on
abstractions for the (global) analysis of straight-line code and require function
calls to be inlined manually [10,18,27,24] and are thus non-modular. The tool
PRECiSA [26,28] analyzes function calls compositionally, however, does not apply
abstraction when doing so. The analysis can thus be considered modular (in
principle), but the computed symbolic function summaries can be very large
and negatively affect the efficiency of the analysis. Goubault et al. [19] present a
modular roundoff error analysis based on the zonotopic abstract domain that does
apply abstraction at function calls. However, the implementation is not available
and the roundoff error analyses based on zonotopes have been shown to be less
accurate than the alternative approach based on symbolic Taylor expressions.

Like most existing roundoff error analyses, our analysis computes absolute
roundoff errors for programs without loops or recursive procedure calls and
without conditional branches; these remain an open, but orthogonal, challenge for
floating-point roundoff error analysis [11,28]. The optimization-based approach

Modular Floating-Point Error Analysis 3

that we extend in this paper has been used for the computation of relative error
bounds [21] as well, however, relative errors are fundamentally undefined for
input domains that include zeros and are thus less widely applicable.

We implement our analysis in a tool called Hugo and evaluate it on two case
studies that are inspired by existing floating-point benchmarks [2]. Our evaluation
shows that compared to an approach based on procedure inlining and an analysis
by state of the art roundoff analysis tools, our modular analysis provides an
interesting tradeoff: it is significantly faster, while computing comparable error
bounds that are often within the same order of magnitude and thus, in our
opinion, practically useful.

Contributions To summarize, this paper presents the following contributions:

– a sound modular roundoff error analysis for non-recursive procedural code
without conditionals that combines modularity and abstraction when analyz-
ing function calls;

– a prototype implementation of our analysis is available open-source at https:
//doi.org/10.5281/zenodo.8175459;

– an empirical evaluation of the accuracy-performance tradeoff of our analysis.

2 Background

In this section, we provide necessary background on floating-point arithmetic
and roundoff error analysis, focusing on the symbolic Taylor expression-based
roundoff error analysis that has been implemented in several tools. We extend
this analysis in Section 3 to support procedure calls. Throughout, we use bold
symbols to represent vectors.

Floating-point Arithmetic The IEEE754 standard [1] formalizes floating-point
numbers and the operations over them. A floating-point number is defined as
a triple (sng, sig, exp) indicating its sign, significant, and exponent, with the
numerical value being (−1)sng × sig× 2exp. The standard introduces four general
binary formats (16, 32, 64 and 128 bits) varying on the sizes of sig and exp.
We assume 64 bit double precision throughout this paper, but our approach
generalizes to other formats as well.

The standard introduces several rounding operators that return the floating-
point number that is closest to the input real number where the closeness is
defined by the specific rounding operator. The most common rounding operator
is rounding to nearest (ties to even), which we assume in this paper.

The distance between the real value and the floating-point representation is
called the roundoff error. Computing this difference exactly is practically infeasible
for all but very short computations. Instead, we and most other roundoff error
analysis tools assume the following rounding model that holds for the rounding
to nearest mode:

rnd(op) = op(1 + e) + d where |e| ≤ ε, |d| ≤ δ (1)

https://doi.org/10.5281/zenodo.8175459
https://doi.org/10.5281/zenodo.8175459

4 Rosa Abbasi and Eva Darulova(B)

Where op is an arithmetic operation (or an input value or constant), ε bounds
the relative error and δ bounds the absolute error. For the standard arithmetic
operations +,−, ∗, /, the IEEE754 standard specifies for double precision ε = 2−53

and δ = 2−1075, where the latter captures the roundoff error of subnormal
floating-point numbers, i.e. numbers very close to zero. For library function calls
to common mathematical functions, e.g. sin, exp, etc., the library specification
typically specifies the corresponding error(s); in this paper we assume 2 ∗ ε (most
libraries provide this bound or better, but our analysis is parametric).

Sound Roundoff Error Analysis The goal of a roundoff error analysis is to compute
the worst-case absolute error:

max
x,x̃∈I

|f(x)− f̃(x̃)| (2)

where f(x) denotes an idealized (purely) numerical program, where x is a
possibly multivariate input, and f̃(x̃) represents the function corresponding to
the floating-point implementation, which has the same syntax tree but with
operations interpreted in floating-point arithmetic. Note that the input to f̃ ,
x̃, is a rounded version of the real-valued input since that may not be exactly
representable in finite precision and may need to be rounded.

We want to maximize the above equation for a set of meaningful inputs I that
depends on a particular application. Bounding roundoff errors for unbounded
input ranges is not practically useful as the error bounds are then in general
unbounded.

In this paper, we consider programs that consist of several procedures and the
goal is to compute an error bound for each of them. The procedure bodies consists
of arithmetic expressions, mathematical library function calls, (immutable) vari-
able declarations and (possibly) calls to procedures defined within the program.

To estimate the rounding error for such programs with existing roundoff
error analyses, the procedure calls need to be effectively inlined—either manually
by a user before an analysis tool is run, or automatically by the tool [26]. For
larger programs, especially with more procedure calls, this can result in very
large (symbolic) expressions and thus long analysis times. This approach is also
fundamentally not suitable for integration into modular verification frameworks,
such as KeY [3] or Frama-C [23].

For our modular analysis, the procedure calls do not need to be inlined.
Instead, for each procedure of the program, our analysis first computes an error
specification that is a function of the input parameters and that abstracts some
of the error computation. Our analysis instantiates these error specifications at
the call sites to compute an overall roundoff error bound (it also checks that the
preconditions of the called procedures are respected).

Symbolic Taylor Expression-Based Roundoff Analysis The approach to roundoff
error analysis (for straight-line code) that we extend in Section 3 was first
proposed in the tool FPTaylor [27]. This approach abstracts the floating-point

Modular Floating-Point Error Analysis 5

function f̃(x̃) using the rounding model from Equation 1 into a real-valued
function f̂(x, e,d) to compute a bound on the roundoff error:

max
x∈I
|f(x)− f̂(x, e,d))|

However, while now entirely real-valued, this expression is in general too
complex for (continuous, real-valued) optimization tools to handle. To reduce
complexity, FPTaylor applies a Taylor expansion:

f(x) = f(a) +
k∑
i=1

∂f

∂xi
(a)(xi − ai) + 1/2

k∑
i,j=1

∂2f

∂xi∂xj
(p)(xi − ai)(xj − aj) (3)

that allows to approximate an arbitrary sufficiently smooth function by a poly-
nomial expression around some point a. p is a point which depends on x and
a and k is the number of input parameters of f . Taylor series define infinite
expansions, however, in practice these are terminated after some finite number
of terms, and a remainder term soundly bounds (over-estimates) the skipped
higher-order terms. In Equation 3 the last term is the remainder.

Applying a first-order Taylor approximation to the abstracted floating-point
function f̂(x, e,d) around the point (x,0,0) we get:

f̂(x, e,d) = f̂(x, 0, 0) +
k∑
i=1

∂f̂

∂ei
(x, 0, 0)(ei − 0) +

k∑
i=1

∂f̂

∂di
(x, 0, 0)(di − 0) +R2(x, e,d)

R2(x, e,d) = 1/2

2k∑
i,j=1

∂2f̂

∂yi∂yj
(x,p)yiyj

(4)

where y1, . . . y2k range over e1, . . . , ek, d1, . . . , dk respectively. Since f̂(x, 0, 0) =
f(x), one can approximate |f̂(x, e,d)− f(x)| by:

|f̂(x, e,d)− f(x)| = |
k∑
i=1

∂f̂

∂ei
(x, 0, 0)ei +

k∑
i=1

∂f̂

∂di
(x, 0, 0)di +R2(x, e,d)|

(FPTaylor Error)
To compute a concrete roundoff error bound, the above expression is maxi-

mized over a given input domain I using rigorous global optimization techniques
such as interval arithmetic [25] or branch-and-bound [27].

The above model can be straight-forwardly extended to capture input errors
on (particular) variables by increasing the bound on the corresponding error
variables ei and/or di. Similarly, library functions for mathematical functions such
as sin, cos, exp, ..., are supported by setting the bound on their corresponding
error variables according to the specification. Note that since the derivatives of the
standard mathematical library functions are well-defined, the partial derivatives
in the equations can be immediately computed.

6 Rosa Abbasi and Eva Darulova(B)

3 Modular Roundoff Error Analysis

In principle, one can apply FPTaylor’s approach (Equation FPTaylor Error)
directly to programs with procedure calls by inlining them to obtain a single
arithmetic expression. This approach, however, results in potentially many re-
evaluations of the same or very similar expressions. In this section, we extend FP-
Taylor’s approach to a modular analysis by considering procedure calls explicitly.

At a high-level, our modular error computation is composed of two stages:

1. The abstraction stage computes an error specification for each procedure of
the input program (Section 3.1 and Section 3.2);

2. The instantiation stage instantiates the pre-computed error specifications for
each procedure at their call-sites with their appropriate contexts.

Note that each procedure is processed only once in each of these stages, regardless
of how often it is called in other procedures.

The main challenge is to compute the error specifications such that they, on
one hand, abstract enough over the individual arithmetic operations to provide
a benefit for the analysis in terms of performance, and on the other hand do not
lose too much accuracy during this abstraction to still provide meaningful results.

A naive way to achieve modularity is to compute, for each procedure, a
roundoff error bound as a constant value, and use that in the analysis of the
procedure calls. This simple approach is, however, not enough, since in order
to analyze a calling procedure, we do not only need to know which new error
it contributes, but we also need to bound its effect on already existing errors,
i.e. how it propagates them. The situation is even further complicated in the
presence of nested procedure calls.

Alternatively, one can attempt to pre-compute only the derivatives from Equa-
tion FPTaylor Error and leave all evaluation to the call sites. This approach then
effectively amounts to caching of the derivative computations, and does not affect
the analysis accuracy, but its performance benefit will be modest as much of the
computation effort will still be repeated.

Our approach rests on two observations from the above discussion. We first
split the error of a procedure into the propagation of input errors and roundoff
errors due to arithmetic operations, following [11]:

|f(x)− f̃(x̃)| = |f(x)− f(x̃) + f(x̃)− f̃(x̃)| ≤ |f(x)− f(x̃)|︸ ︷︷ ︸
propagation error

+ |f(x̃)− f̃(x̃)|︸ ︷︷ ︸
round-off error

and compute error specifications for each of these errors separately. This allows
us to handle the propagation issue from which the naive approach suffers. We
employ suitable, though different, Taylor approximations for each of these parts.

Secondly, we pre-evaluate, at the abstraction stage already, part of the resulting
Taylor approximations, assuming the context, resp. input specification of each
procedure. This results in some accuracy loss when the procedure is called in a
context that only requires a narrower range, but saves analysis time.

Modular Floating-Point Error Analysis 7

Naturally, our pre-computed error specifications are only sound if they are
called from contexts that satisfy the assumed input specifications. Our imple-
mentation checks that this is indeed the case.

Running Example We use the following simple example for explaining and
illustrating our technique:

g(x) = x2 where x ∈ [0.0, 100.0]

f(y, z) = g(y) + g(z) where y ∈ [10.0, 20.0], z ∈ [20.0, 80.0]

(Running Example)

Here, g is being called twice with arguments with different input specifications,
but which are both within the allowed range of g of [0, 100]. We will consider
nested procedure calls in Section 3.4.

Notation We use f , g and h to denote procedures, x, y, z, w and t for input
parameters and also as input arguments if a procedure contains procedure calls,
and a, b and c for input arguments. Bold symbols are used to represent vectors.
Each error specification of a procedure f consists of a roundoff error function
denoted by βf and the propagation error function, denoted by γf . We use
βf (a) and γf (a) to denote the evaluation of roundoff and propagation error
specifications for a procedure f with a as the vector of input arguments. We
denote the initial errors of input parameters by u, the relative error of a rounding
operator by e, and the absolute error by d. The maximum values for the relative
and absolute errors are represented by ε and δ respectively. We assume ε to
denote the maximum error for our default precision, i.e. double precision. We
will use the notation ∂ĝ

∂ei

∣∣∣
x,0,0

to denote ∂ĝ
∂ei

(x, 0, 0) for readability reasons.

3.1 Roundoff Error Abstraction

In this section, we extend FPTaylor’s approach with a rounding model for proce-
dure calls and show how it can be used to compute roundoff error specifications.
Since input errors are handled by the propagation error specification (Section 3.2),
we assume here that procedure inputs have no errors.

One of the main challenges of such an extension is that contrary to how the
library function calls are handled (see Section 2), there is no given derivative
and fixed upper-bound on the rounding error for arbitrary procedure calls.

If g is a procedure with input arguments a at the call site, and βg the
corresponding roundoff error specification of g, then we extend the IEEE754
rounding model to procedure calls by:

g̃(a) = g(a) + βg(a)

That is, we abstract the rounding error by an absolute error, whose magnitude is
determined by the error specification of f that is a function of the input arguments.

8 Rosa Abbasi and Eva Darulova(B)

With this, we can proceed to extend the (FPTaylor Error) with procedure
calls. Suppose we have a procedure f(x) that contains the procedure calls
g1(a1), . . . gl(al) to procedures g1, . . . gl, where a1, . . . ,al are the input argu-
ments, and βg(a) = (βg1(a1), . . . , βgl(al)) is the vector of corresponding roundoff
error specifications. Then the roundoff error specification βf for the procedure
f(x) is given by:

βf = f̂(x, e,d,βg(a))− f(x)

=

k∑
i=1

∂f̂

∂ei

∣∣∣∣∣
x,0

ei +

k∑
i=1

∂f̂

∂di

∣∣∣∣∣
x,0

di +

l∑
i=1

∂f̂

∂βgi(ai)

∣∣∣∣∣
x,0

βgi(ai) +R2(x, e,d,βg(a)),

where

R2(x, e,d,βg(a)) = 1/2

2k+l∑
i,j=1

∂2f̂

∂yi∂yj

∣∣∣∣∣
x,p

yiyj

(Roundoff Specification)

where y1, . . . y2k define e1, . . . , ek, d1, . . . , dk as before, and y2k+1, . . . , y2k+l cor-
respond to βg1(a1), . . . , βgl(al) respectively.

Note that to derive the roundoff error specification for f , the concrete roundoff
specifications for gi are not required, i.e. we treat βg as a symbolic variable in
the same way as ei and di. They are only instantiated at the evaluation phase,
at which point all βgs are available.

Correctness Note that if we were to inline all βg roundoff specifications in βf
above (potentially recursively), we would reach the same roundoff error formula
as given by (FPTaylor Error) for a program where all procedure calls are inlined.
Depending on the nesting, one needs higher-order terms of the Taylor expansion
to achieve such equivalence.

Running Example To see this, lets consider our (Running Example). In order
to compute the roundoff specifications for procedures g and f , we first compute
the real-valued abstractions of the floating-point procedures of g and f , (i.e.,
ĝ(x, e1, d1) and f̂(y, z, e2, βg(y), βg(z)) respectively) by applying the floating-point
rounding model and the rounding model for procedure calls, on the floating-point
functions g̃ and f̃ :

ĝ(x, e1, d1) = x2(1 + e1) + d1

f̂(y, z, e2, βg(y), βg(z)) = (g(y) + βg(y) + g(z) + βg(z))(1 + e2)

The next step is to compute the roundoff error specifications βg and βf . Since
g does not contain any procedure calls, then βg follows the (FPTaylor Error)
formula directly:

βg =
∂ĝ

∂e1

∣∣∣∣
x,0,0

e1 +
∂ĝ

∂d1

∣∣∣∣
x,0,0

d1

Modular Floating-Point Error Analysis 9

Next, we compute the roundoff specification for f :

βf =
∂f̂

∂e2

∣∣∣∣∣
y,z,0

e2 +
∂f̂

∂βg(y)

∣∣∣∣∣
y,z,0

βg(y) +
∂f̂

∂βg(z)

∣∣∣∣∣
y,z,0

βg(z) +R2(y, z, e2, βg(y), βg(z)),

(5)

where,

R2(y, z, e2, βg(y), βg(z)) = 1/2(
∂2f̂

∂βg(y)∂e2

∣∣∣∣∣
y,z,e2,βg(y),βg(z)

βg(y)e2+

∂2f̂

∂βg(z)∂e2

∣∣∣∣∣
y,z,e2,βg(y),βg(z)

βg(z)e2+

∂2f̂

∂e2∂βg(y)

∣∣∣∣∣
y,z,e2,βg(y),βg(z)

e2βg(y)+

∂2f̂

∂e2∂βg(z)

∣∣∣∣∣
y,z,e2,βg(y),βg(z)

e2βg(z)).

If we replace the βg functions in Equation 5 by their respective Taylor
expansions we reach the following:

βf = R2(y, z, e2, βg(y), βg(z)) +
∂f̂

∂e2

∣∣∣∣∣
y,z,0

e2

+
∂f̂

∂βg(y)

∣∣∣∣∣
y,z,0

(
∂ĝ(y)

∂e1

∣∣∣∣
y,0,0

e1 +
∂ĝ(y)

∂d1

∣∣∣∣
y,0,0

d1)︸ ︷︷ ︸
βg(y)

+
∂f̂

∂βg(z)

∣∣∣∣∣
y,z,0

(
∂ĝ(z)

∂e1

∣∣∣∣
z,0,0

e1 +
∂ĝ(z)

∂d1

∣∣∣∣
z,0,0

d1)︸ ︷︷ ︸
βg(z)

(6)

Based on the rounding model for procedure calls, we can deduce that ∂f̂
∂βg(a) =

∂f̂
∂ĝ(a) . If we replace ∂f̂

∂βg(y) and ∂f̂
∂βg(z) in Equation 6 and also apply the chain

rule (e.g., ∂f̂
∂ĝ(y) ×

∂ĝ(y)
∂e1

= ∂f̂
∂e1

), we reach a formula that is equal to applying the
(FPTaylor Error) on

f̂in = (y2(1 + e1) + d1 + z2(1 + e2) + d2)(1 + e3),

which is the abstraction of the floating-point inlined version of f , i.e. f̃in(y, z) =
y2 + z2. For simplicity, here we did not expand on the remainder. However, the
reasoning is similar.

10 Rosa Abbasi and Eva Darulova(B)

Partial Evaluation Besides abstraction that happens in the presence of nested
function calls due to considering only first-order Taylor expansions and no
higher-order terms, we abstract further by evaluating those error terms in
(Roundoff Specification) that tend to be small already at the abstraction phase.

Specifically, we evaluate:

– the first-order derivatives w.r.t. absolute errors for subnormals, i.e. dis,
– the remainder terms that do not contain any β terms themselves.

For this evaluation, we use the input specification of the procedure call. By
doing so, we skip the re-instantiation of these small term at the call sites and
over-approximate the (small) error of these terms. Since these terms are mostly of
higher-order (especially the remainder terms) over-approximating them improves
the analysis performance while having small impact on the analysis accuracy.

3.2 Propagation Error Abstraction

The goal is to compute the propagation error specification γf for a procedure f as
a function of the input parameters, while achieving a reasonably tight error bound.
We over-approximate the propagation error, i.e., max |f(x)− f(x̃)| by following
the approach proposed in [11] while extending it to also support procedure calls.
We first explain how the propagation error specification is computed, when there
are no procedure calls (or they are inlined) and then we explain our extension to
support procedure calls.

Suppose ui, . . . uk are the initial errors of the input variables x1, . . . , xk, i.e.
x̃ = x+u. Similarly to the roundoff specification, we apply the Taylor expansion
to f(x̃), but this time we take the derivatives w.r.t. the input variables:

f(x̃)− f(x) =
k∑
i=1

∂f

∂xi
ui + 1/2

k∑
i,j=1

∂2f

∂xi∂xj
uiuj (7)

Now consider the case where f(x) contains procedure calls of g1(a1), . . . gl(al),
where a1, . . . ,al are the input arguments and γ(a) = (γg1(a1), . . . , γgl(al)) is
the vector of corresponding propagation error specifications. We compute the
propagation error specification for a procedure f as follows:

γf =

k∑
i=1

∂f

∂xi
ui +

l∑
i=1

∂f

∂gi(ai)
γgi(ai) +R2(x,u,γ(a))

(Propagation Specification)

where,

R2(x,u,γ(a)) = 1/2(

k∑
i,j=1

∂2f(x)
∂xi∂xj

uiuj +

k,l∑
i,j=1

∂2f(x)
∂xi∂gj

uiγgj (aj)+

l∑
i,j=1

∂2f(x)
∂gi∂gj

γgi(ai)γgj (aj) +

l,k∑
i,j=1

∂2f(x)
∂gi∂xj

γgi(ai)uj)

Modular Floating-Point Error Analysis 11

That is, we compute and add the propagation error of the called procedures by
computing the derivatives of the calling procedure w.r.t the called procedures and
multiplying such terms by their respective γ function, which is the propagation
error of the called procedure. The remainder terms w.r.t called procedures are
computed similarly.

Correctness Just as with the roundoff specifications, if we were to replace the
γgis by their corresponding formulas in γf , we would reach the same propagation
error specification as if we had computed it with Equation 7 for a program with
all procedures inlined. Again, higher-order Taylor expansion terms may be needed
for an equivalence.

Running Example To see this, lets consider our (Running Example). Suppose
ux, uy, and uz are the initial errors for procedures g and f respectively. The
propagation specifications for g and f are computed as follows:

γg =
∂g

∂x
ux + 1/2(

∂2g

∂x2
u2x) = 2xux + u2x

γf =
∂f

∂g(y)
γg(y) +

∂f

∂g(z)
γg(z) = γg(y) + γg(z) = 2xuy + 2yuz + u2y + u2z

Note that replacing the γg functions with their equivalent Taylor expansion
in γf and applying the chain rule (e.g., ∂f

∂g(y) ×
∂g(y)
∂y = ∂f

∂y), would result in the
Taylor expansion of the inlined version of f(x̃).

Partial Evaluation While computing the propagation specification γ, we evaluate
the small error terms of the error specification and add them as constant error
terms to the error specification. These small terms are the remainder terms that
do not contain any γ terms themselves. Doing so, we skip the re-evaluation of
these small terms at the call sites and therefore, speed-up the analysis.

3.3 Instantiation of Error

In the second step of our analysis, we instantiate the propagation and roundoff
error specifications of each procedure of the program using its input intervals.
In other words, for each procedure, we compute upper bounds for the β and γ
error specifications. For the instantiation of the error specifications, one can use
different approaches to maximize the error expressions. In Hugo, one can chose
between interval arithmetic and a branch-and-bound optimization.

The instantiation of an error specification for a procedure is conducted in
a recursive fashion. In order to compute an upper bound on the error for a
procedure, we instantiate the error terms of the corresponding error specification
using interval analysis. While instantiating the error, we may come across β or
γ functions corresponding to the called procedures. In such cases, we fetch the

12 Rosa Abbasi and Eva Darulova(B)

error specification of these called procedures and instantiate them using the input
intervals of the calling procedure.

Note that in the first stage of the analysis and while computing the error
specifications, we over-approximated the error by pre-evaluating the smaller
terms there and adding them as constants to the error specifications. As a result,
in this stage and before instantiating an error specification of a called procedure,
we check that the input intervals of input parameters of the called procedure—for
which the error specification function is computed—enclose the intervals of input
arguments at the call site. This precondition check can also be applied post
analysis.

For the (Running Example), instantiating the roundoff error specification of
g results in the following evaluated β functions.

βg = εmax |x2|+ δ,

βf = εmax |g(y) + g(z)|+ (1 + 2ε)max |βg(y) + βg(z)|

3.4 Handling Nested Procedures

We now explain how our analysis extends beyond the simple case discussed so
far, and in particular how it supports the case when a procedure argument is an
arithmetic expression or another procedure call.

In such a case, one needs to take into account the roundoff and propagation
error of such input arguments. We treat both cases uniformly by observing that
arithmetic expression arguments can be refactored into separate procedures, so
that we only need to consider nested procedure calls.

We compute the roundoff and propagation error specification of the nested
procedure call in a similar fashion as before. Though, while computing the β
and γ specifications with nested procedure calls we incorporate their respective
β and γ functions in the solution. That is, we take the β function of a nested
procedure into account while we create a rounding abstraction for a procedure
call. For example, for the procedure call f(g(a)), the rounding model is:

f̃(g(a)) = f(g(a) + βg(a)) + βf (g(a) + βg(a))

On the other hand, while computing the propagation error specification of a
procedure call such as f(g(a)), instead of multiplying the computed derivatives
by their respected initial error, they get multiplied by the respective propagation
error specification, i.e. γg(a).

Example We illustrate how we handle nested procedure calls with a slightly more
involved example:

g(x) = x2, where x ∈ [0.0, 500.0]

h(y, z) = y + z, where y ∈ [10.0, 20.0], z ∈ [10.0, 20.0]

f(w, t) = g(h(w, t)) where w ∈ [12.0, 15.0], t ∈ [12.0, 15.0]

(8)

Modular Floating-Point Error Analysis 13

The roundoff error specification for g is computed as before for our
(Running Example) and since h does not contain any procedure calls, βh is
computed straight-forwardly as before.

The abstraction of the floating-point procedure of f is as follows:

f(w, t, βg, βh) = g(χ(w, t)) + βg(χ(w, t))

where,
χ(w, t) = h(w, t) + βh(w, t)

Next we compute βf :

βf =
∂f̂

∂βh(w, t)
βh(w, t) +

∂f̂

∂βg(χ(w, t))
βg(χ(w, t)) + 1/2

∂2f̂

∂βh(w, t)2
β2
h(w, t) =

∂g(χ(w, t))

∂(h(w, t)βh(w, t) + βh(w, t))
βh(w, t) + βg(χ(w, t)) + β2

h(w, t)

If βf is instantiated then we obtain:

βf = max |3ε(w + t)2 + 3ε2(w + t)2 + ε3(w + t)2|

If we compute the roundoff specification for the inlined version of f i.e.,
(w + t)2, using the Taylor expansion, however up to the third-order derivative
terms, we reach the same error specification as in βf above.

To compute the propagation error, consider ux as the initial error for g, uy
and uz as initial errors for h and uw and ut as initial errors in f . The propagation
error specification for g is as computed before for (Running Example) and is
equal to 2xux+u

2
x. The propagation error specifications of h and f are as follows:

γh =
∂h

∂y
uy +

∂h

∂z
uz = uy + uz

γf =
∂f

∂g(h(w, t))
γg(h(w, t)) = γg(h(w, t)) = 2h(w, t)γh(w, t) + γ2h(w, t)

Therefore,
γf = 2(w + t)(uw + ut) + (uw + ut)

2

The inlined version of f has the same propagation error specification.

4 Implementation

We have implemented our proposed modular error analysis technique in a proto-
type tool that we call Hugo in the Scala programming language. We did not find
it feasible to extend an existing implementation of the symbolic Taylor expression-
based approach in FPTaylor [27] (or another tool) to support procedure calls.

14 Rosa Abbasi and Eva Darulova(B)

We thus opted to re-implement the straight-line code analysis inside the Daisy
analysis framework [10] which supports function calls at least in the frontend. We
implement our modular approach on top of it and call it Hugo in our evaluation.

Our implementation does not include all of the performance or accuracy
optimizations that FPTaylor includes. Specifically, it is not our goal to beat
existing optimized tools in terms of result accuracy. Rather, our aim is to
evaluate the feasibility of a modular roundoff error analysis. We expect that
most, if not all, of FPTaylor’s optimizations (e.g. detecting constants that can
be exactly represented in binary and thus do not incur any roundoff error) to
be equally beneficial to Hugo. Nevertheless, our evaluation suggests that our
re-implementation is reasonable.

Hugo takes as input a (single) input file that includes all of the procedures.
Integrating Hugo into a larger verification framework such as KeY [3] or Frama-
C [23] is out of scope of this paper.

In Hugo, we use intervals with arbitrary-precision outer bounds (with out-
wards rounding) using the GNU MPFR library [15] to represent all computed
values, ensuring a sound as well as an efficient implementation. Hugo supports
three different procedures to bound the first-order error terms in equations Round-
off Specification and Propagation Specification: standard interval arithmetic, our
own implementation of the branch-and-bound algorithm or Gelpia [4], the branch-
and-bound solver that FPTaylor uses. However, we have had difficulties to obtain
reliable (timely) results from Gelpia. Higher-order terms are evaluated using
interval arithmetic.

5 Evaluation

We evaluate our modular roundoff error analysis focusing on the following research
questions:

RQ1: What is the trade-off between performance and accuracy of our modular
approach?

RQ2: How does the modular approach compare to the state-of-the-art?

5.1 Experimental Setup

We evaluate Hugo on two case studies, complex and matrix, that reflect a setting
where we expect a modular analysis to be beneficial. Each case study consists of
a number of procedures; some of these would appear as library functions that are
(repeatedly) called by the other procedures. Each procedure consists of arithmetic
computations and potentially procedure calls, and has a precondition describing
bounds on the permitted input arguments.

Our two case studies are inspired by existing floating-point benchmarks used
for verifying the absence of floating-point runtime errors in the KeY verification
framework [2]. We adapted the originally object-oriented floating-point Java
programs to be purely procedural. We also added additional procedures and

Modular Floating-Point Error Analysis 15

Table 1. Case study statistics

benchmark
top level
procedures

procedure
calls

arith. ops.
arith. ops.

inlined

matrix 5 15 26 371
matrixXL 6 33 44 911
matrixXS 4 6 17 101

complex 15 152 98 699
complexXL 16 181 127 1107
complexXS 13 136 72 464

procedure calls to reflect a more realistic setting with more code reuse where
a modular analysis would be expected to be beneficial. Note that the standard
floating-point benchmark set FPBench [9] is not suitable for our evaluation as it
consists of only individual procedures.

matrix The matrix case study contains library procedures on 3×3 matrices, namely
for computing the matrix’ determinant and for using this determinant to solve
a system of three linear equations with three variables, using Cramer’s Rule.
Finally, we define a procedure (solveEquationsVector) that solves three systems
of equations and computes the average of the returned values, representative of
application code that uses the results of the systems of equations. See Listing 1.2
in the Appendix for the (partial) matrix code.

complex The complex case study contains library procedures on complex numbers
such as division, reciprocal and radius, as well as procedures that use complex
numbers for computing properties of RL circuits. For example, the radius proce-
dure uses Pythagoras’ theorem to compute the distance to the origin of a point
represented by a complex number in the complex plane. The computeRadiusVector

demonstrates how the radius library procedure may be called to compute the
radius of a vector of complex numbers. The approxEnergy procedure approximates
the energy consumption of an RL circuit in 5 time steps.

Listing 1.1 shows partial code of our complex case study. The procedure _add

is a helper procedure that implements an arithmetic expression (and not just a
single variable) that is used as argument of a called procedure; see Section 3.4
for how our method modularly incorporates the roundoff and propagation errors
resulting from such an expression. For now this refactoring is done manually, but
this process can be straight-forwardly automated.

Table 1 gives an overview of the complexity of our case studies in terms of the
number of procedures and procedure calls, as well as the number of arithmetic
operations in both the inlined and the procedural (original) versions of the
code. We inline all procedure calls for comparison with state-of-the-art tools
FPTaylor [27] and Daisy [10], since they do not handle them.

16 Rosa Abbasi and Eva Darulova(B)

Listing 1.1. complex case study
object complex {

2 def _add(rm1: Real): Real = {...}

def divideRe(re1: Real, im1: Real, re2: Real, im2: Real): Real = {...}

4 def divideIm(re1: Real, im1: Real, re2: Real, im2: Real): Real = {...}

def reciprocalRe(re1: Real, im1: Real): Real = {...}

6 def reciprocalIm(re1: Real, im1: Real): Real = { ... }

def impedanceIm(frequency5: Real, inductance: Real): Real = {...}

8 def instantVoltage(maxVoltage: Real, frequency4: Real, time: Real): Real = {...}

def computeCurrentRe(maxVoltage: Real, frequency3: Real, inductance: Real,

10 resistance: Real): Real = {...}

def computeCurrentIm(maxVoltage: Real, frequency2: Real, inductance: Real,

12 resistance: Real): Real = {...}

def radius(re: Real, im: Real): Real = {...}

14 def computeInstantCurrent(frequency1: Real, time: Real, maxVoltage: Real,

inductance: Real, resistance: Real): Real = {...}

16

def approxEnergy(frequency: Real, maxVoltage: Real, inductance: Real,

18 resistance: Real): Real = {

require(((frequency >= 1.0) && (frequency <= 100.0) && (maxVoltage >= 1.0) &&

20 (maxVoltage <= 12.0) && (inductance >= 0.001) && (inductance <= 0.004) &&

(resistance >= 1.0) && (resistance <= 50.0)))

22

val t1: Real = 1.0

24 val instCurrent1: Real = computeInstantCurrent(frequency, t1, maxVoltage,

inductance, resistance)

val instVoltage1: Real = instantVoltage(maxVoltage, frequency, t1)

26 val instantPower1: Real = instCurrent1 * instVoltage1

val t2: Real = _add(t1)

28 val instCurrent2: Real = computeInstantCurrent(frequency, t2, maxVoltage,

inductance, resistance)

val instVoltage2: Real = instantVoltage(maxVoltage, frequency, t2)

30 val instantPower2: Real = instCurrent2 * instVoltage2

...

32 (0.5 * instantPower1) + (0.5 * instantPower2) + (0.5 * instantPower3) +

(0.5 * instantPower4) + (0.5 * instantPower5)

34 }

def computeRadiusVector(re: Real, im: Real): Real = {

36 require(((re >= 1) && (re <= 2.0) && (im >= 1) && (im <= 2.0)))

38 val v1 = radius(re, im)

val re2 = _add(re)

40 val im2 = _add(im)

val v2 = radius(re2, im2)

42 ...

v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10

44 }

...

46 }

Modular Floating-Point Error Analysis 17

We additionally create extended and shortened versions of our two case
studies, denoted with the suffixes XL and XS, respectively. The XL versions contain
one additional procedure that is an extended version of an existing procedure
with twice as many procedure calls. In matrix, we extend solveEquationsVector,
and for complex we extend approxEnergy. In the XS version of matrix, we remove
solveEquationsVector and for complex we remove the two procedures that were
particularly problematic for FPTaylor (it times out), i.e. computeInstantCurrent and
approxEnergy.

We run our experiments on a server with 1.5TB memory and 4x12 CPU cores
at 3GHz. However, Hugo runs single-threadedly and does not use more than
8GB of memory. We consider a timeout of one hour for analyzing each case study.
We assume uniform 64 bit double precision for all floating-point operations.

5.2 RQ1: Accuracy-Performance Trade-off

We first evaluate the effectiveness of our modular approach in terms of the trade-off
between the performance of the analysis and the accuracy of the computed error
bounds. To do so, we compare Hugo’s computed error bounds and performance
on our case studies in an ablation study with and without inlining procedures,
and by varying the specified input ranges of procedure’s parameters.

The accuracy of our modular analysis is influenced by the input range spec-
ifications of procedures. Wider input ranges will typically lead to looser error
bounds, but will enable procedures to be used in more contexts. We thus define
two versions of our case studies: one with tighter input parameter bounds and
one with wider ones. We widen the input specifications of the procedures such
that for each input interval [a, b] we generate the interval [a− (b− a), b+ (b− a)],
resulting in a new interval three times as wide as the original interval. We do this
widening only for the library procedures (i.e. procedures without procedure calls
that are called in other procedures) and only when it is feasible; occasionally it
results in division by zero and illegal argument to library procedures errors, and
in those cases we only do a more limited widening.

The most accurate error bounds will be computed by inlining all procedure
calls at their call site, since by doing so no over-approximation is committed
due to procedure summaries. This effectively corresponds to always having the
tightest input range bounds at each call site. This comes at the expense of having
to potentially repeatedly re-analyze the same procedure many times and thus
increase the analysis time.

The results of this experiment are shown in Table 2. The running time (in
seconds) is the time for analyzing an entire case study with all procedures and
including the check that preconditions are satisfied. We ran each experiment
three times and recorded the average runtime in Table 2. We only show the error
bounds for procedures containing procedure calls, since those are the ones with
over-approximated errors with a modular analysis.

As expected, inlining the procedures for the matrix case study results in smaller
errors compared to the original procedures. However, the runtime increases more

18 Rosa Abbasi and Eva Darulova(B)

Table 2. Hugo runtimes (with precondition check) for original procedures and proce-
dures with widened and tightened input intervals

original inlined proced. 3× interval
ca
se procedure

err time(s) error time(s) err time(s)
solveEquationX 4.14e-15 1.50e-15 3.59e-14
solveEquationY 4.68e-15

3.9
2.12e-15

519.0
4.04e-14

3.9
solveEquationZ 5.16e-15 2.57e-15 4.46e-14m

at
ri
x

solveEquationsVector 4.73e-15 2.88e-16 4.04e-14
computeCurrentRe 6.12e-10 - 8.00e-10
computeCurrentIm 6.71e-10 - 2.55e-09
computeInstantCurrent 3.34e-03 - 3.77e-03
approxEnergy 1.00e-01 239.7 - TO 1.13e-01 239.2
computeRadiusVector 1.47e-11 - 5.84e-11
computeDivideVector 2.39e-10 - 2.39e-10

co
m
pl
ex

computeReciprocalRadiusV. 3.12e-14 - 3.12e-14

than 130 times. For the inlined version of the complex case study the runtime
exceeds the timeout and hence no errors are reported.

Widening the input intervals for library procedures in both case studies
results—also as expected— in equal or less accurate error bounds, however, the
difference is mostly quite small. We thus conclude that our modular analysis is
clearly more efficient than the baseline analysis with inlined procedures, and effec-
tively supports procedures with wider input ranges, while producing reasonable
error bounds.

5.3 RQ2: Comparison with the State of the Art

We next compare Hugo in terms of performance and accuracy with the state of
the art tools FPTaylor [27] and Daisy [10]. We choose FPTaylor as it implements
the baseline symbolic Taylor expression approach to roundoff error analysis and
has been shown to generally outperform other tools. Additionally, we include Daisy
which is also open-source and implements a different, dataflow-based, roundoff
error analysis that has been shown to be generally less accurate, but often faster
than FPTaylor—it thus represents a different point in the accuracy/performance
tradeoff space.

We use Daisy’s default settings that implement a dataflow-based roundoff
error analysis using interval arithmetic to track ranges and affine arithmetic to
track errors. For FPTaylor, we used for the most part the default configuration
setting with the following exceptions:
1. We set the option for the improved rounding model to false to reduce running

time; we haven’t observed a noticeable effect on accuracy for our case studies.
2. We set FPTaylor to compute the maximum possible initial rounding error

for all input variables to match Hugo’s behavior.
3. We turned the debugging option off to decrease running time.

Modular Floating-Point Error Analysis 19

Table 3. Comparison of Hugo’s, Daisy’s and FPTaylor’s runtimes and computed errors

Hugo Daisy FPTaylor
case study procedure

err time(s) error time(s) err time(s)

solveEquationX 4.14e-15 1.07e-15 3.83e-16
solveEquationY 4.68e-15

3.9
1.55e-15

10.5
6.11e-16

539.7
solveEquationZ 5.16e-15 1.90e-15 4.96e-16

matrix

solveEquationsVector 4.73e-15 2.09e-16 1.83e-16

matrixXL solveEquationsVectorXL 4.78e-15 5.9 2.53e-16 24.2 2.27e-16 1342.0

matrixXS 3.5 4.0 158.9

computeCurrentRe 6.12e-10 4.90e-10 9.65e-14
computeCurrentIm 6.71e-10 2.46e-11 2.42e-13
computeInstantCurrent 3.34e-03 5.57e+01 -

approxEnergy 1.00e-01 239.7 1.67e+03 439.1 - TO

computeRadiusVector 1.47e-11 6.20e-14 7.26e-14

computeDivideVector 2.39e-10 8.26e-14 3.85e-14

complex

computeReciprocalRadiusV. 3.12e-14 3.89e-14 4.67e-15

complexXL approxEnergyXL 2.00e-01 969.3 3.34e+03 1315.1 - TO

complexXS 181.7 13.4 140.7

Since neither Daisy nor FPTaylor support procedure calls, we inline all
procedure calls and call the tools on the fully inlined code. Just like for Hugo, we
report running times for computing roundoff error bounds for all procedures in a
case study. For Daisy, we prepare one file with all procedures, for FPTaylor we
sum up the running times for analyzing each procedure separately, since FPTaylor
supports only a single expression per input file (we report the running times for
individual procedures in the appending in Table 4). We ran each experiment
three times and report the average runtimes.

The results of this experiment are shown in Table 3. As before, we only show
the error bounds for procedures containing procedure calls. For the XL versions
we only report the error of the additional procedure, and for the XS version we
do not report errors, since this version has a procedure removed.

Hugo is faster than Daisy and FPTaylor on all but the complexXS case study,
and often significantly so. For matrix, Hugo is 2.6x and 138x faster than Daisy and
FPTaylor, respectively. For matrixXL, the improvements are 4.1x and 227x. These
improvements come with error bounds that are within an order of magnitude of
those of Daisy and FPTaylor.

FPTaylor is not able to compute errors for two of the longest procedures of
complex, reporting infinite errors using the default settings. We changed FPTaylor’s
configuration for these two procedures to be more precise (evaluating second-order
terms with a more accurate procedure), however, with this setting FPTaylor
timed out, i.e. it took more than one hour for each procedure.

For the complexXS case study, which does not include the two longest procedures,
Hugo is slower than both Daisy and FPTaylor. This is not unexpected, as

20 Rosa Abbasi and Eva Darulova(B)

Hugo’s modular analysis has a certain (implementation) overhead and is thus
most effective if there are many procedure calls with a lot of code reuse.

For the full complex and complexXL case studies, Hugo is faster than Daisy by
1.8x and 1.3x, respectively. We suspect that the improvements for the XL version
are smaller than for the original one due to inefficiencies in our implementation
(e.g. due to missed caching opportunities). That said, Hugo can even produce
tighter error bounds than Daisy for 4 procedures. This is due to Hugo using a
different, generally more accurate, type of analysis. FPTaylor also uses this more
accurate analysis, but as our experiments show, the non-modular version does
not scale well for larger programs.

Hugo can potentially produce tighter error bounds by applying the branch
and bound algorithm instead of the interval analysis for range evaluation. However,
for the current set of procedures Hugo was only able to produce (slightly) tighter
bounds for four procedures, while taking significantly longer.

In conclusion, compared to FPTaylor and Daisy, Hugo’s modular analysis is
significantly faster for code with many procedure calls. While Hugo generally does
not match the accuracy of existing tools exactly (it fundamentally cannot), our
evaluation shows that it nonetheless produces error bounds that are reasonably
close to be useful for many (though obviously not all) applications. For the largest
procedures, our modular analysis even enables to compute significantly tighter
error bounds, resp. any error bounds at all.

6 Related Work

Automated sound static analyses for floating-point arithmetic programs have
recently seen much interest. Dataflow-based techniques track floating-point ranges
and errors using abstract domains, typically using interval or affine arithmetic,
in a forward analysis through a program [18,10,13]. The advantage of these
techniques is that they are relatively efficient [10,27]. Alternative approaches
construct symbolic constraints that are then solved using global optimization
techniques [27,26,24]. These have been shown to produce, in general, tighter error
bounds [27,26]. We extend the approach implemented in the tool FPTaylor [27]
that applies Taylor approximations to make the optimization problem compu-
tationally feasible. The tool PRECiSA generates different constraints (though
for addition, subtraction and multiplication they coincide) but also solves them
with branch-and-bound techniques. PRECiSA supports function calls in its input
programs; it computes the error constraints compositionally but inlines them
before evaluation of concrete error bounds and does not perform additional
abstractions.

The tool Satire [12] also implements the symbolic Taylor expression-based
approach, with additional optimizations for efficiency. Some of these, such as
dropping higher-order terms, make the analysis unsound, i.e. the computed error
bounds are not guaranteed to be an over-approximation. Our analysis is sound.

The only work that we are aware of that proposes a floating-point roundoff
error analysis combining modularity with function summary abstraction [19]

Modular Floating-Point Error Analysis 21

extends the less accurate data-flow-based analysis approach with the zonotope
abstract domain. It uses the zonotopes to compute summaries of procedure
bodies, which is effectively a first-order—though different—approximation of the
roundoff errors that we apply in our approach. Unfortunately, the implementation
is not available for comparison. The paper describes an approach to re-compute
summaries when the preconditions of the called procedures are not valid at
particular call sites. Our implementation currently assumes that preconditions
provided by users are sufficiently weak, but a more automated procedure, similar
to the above, could be integrated with our approach as well.

Floating-point programs have also been analyzed by deductive verification
techniques that are fundamentally modular [14,2]. These tools generate veri-
fication conditions that are typically discharged by external SMT solvers or
theorem provers, and do not automatically compute (over-approximations of)
floating-point roundoff errors. As a consequence, automated roundoff verifica-
tion is limited to relatively simple computations [2], or requires substantial user
interaction in form of annotations [16].

The tools FPTaylor [27], PRECiSa [26], Daisy [5] and real2Float [24] can
generate proof certificates that can be independently checked by an interactive
theorem prover to ensure the soundness of the computed error bounds. Interactive
theorem provers have also been used to prove complex functional properties about
floating-point programs, including roundoff errors [7,20]. While they provide an
additional level of assurance by their proofs being verified in Coq or HOL, such
proofs are manual and require substantial expertise in both theorem proving as
well as floating-point arithmetic.

7 Conclusion

We showed how to extend the optimization-based roundoff error analysis for
floating-point arithmetic to effectively support (nested) procedure calls. Our
evaluation shows that our analysis provides an interesting tradeoff between
analysis accuracy and performance, offering substantially smaller analysis times
for programs with many procedure calls. Our prototype implementation allows
to analyze purely procedural programs; but we expect our approach to be useful
in the future as a building block in (existing) modular verification tools.

A Appendix

The code for the matrix case study is shown (partially) in Listing 1.2. The
runtimes of FPTaylor for individual procedures are shown in Table 4.

References

1. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of
IEEE 754-2008) (2019). https://doi.org/10.1109/IEEESTD.2019.8766229

https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229

22 Rosa Abbasi and Eva Darulova(B)

Listing 1.2. matrix case study
object matrix {

2 def determinant(a: Real, b: Real, c: Real, d: Real, e: Real, f: Real, g: Real,

h: Real, i: Real): Real = {

4 require((0.8 <= a) && (a <= 20.4) && (0.8 <= b) && (b <= 75.9) && (0.8 <= c) &&

(c <= 50.4) && (0.8 <= d) && (d <= 57.3) && (-60.0 <= e) && (e <= 10.2) &&

6 (-92.0 <= f) && (f <= 10.2) && (0.8 <= g) && (g <= 93.6) && (-3.6 <= h) &&

(h <= 10.2) && (-15.3 <= i) && (i <= -2.4))

8
a * ((e * i) - (f * h)) - b * ((d * i) - (f * g)) + c * ((d * h) - (e * g))

10 }

// solves a system of equations using the Cramer’s rule (variable x)

12 def solveEquationX(a1: Real, b1: Real, c1: Real, d1: Real, a2: Real, b2: Real,

c2: Real, d2: Real, a3: Real, b3: Real, c3: Real, d3: Real): Real = {

14 require((19.3 <= a1) && (a1 <= 20.3) && (74.8 <= b1) && (b1 <= 75.8) &&

(49.3 <= c1) && (c1 <= 50.3) && (0.9 <= d1) && (d1 <= 10.1) && ...))

16
val d: Real = determinant(a1, b1, c1, a2, b2, c2, a3, b3, c3)

18 val d_x: Real = determinant(d1, b1, c1, d2, b2, c2, d3, b3, c3)

val x: Real = d_x / d

20 x

}

22 // solves a system of equations using the Cramer’s rule (variable y)

def solveEquationY(a1: Real, b1: Real, c1: Real, d1: Real, a2: Real, b2: Real,

24 c2: Real, d2: Real, a3: Real, b3: Real, c3: Real, d3: Real): Real = {...}

// solves a system of equations using the Cramer’s rule (variable z)

26 def solveEquationZ(a1: Real, b1: Real, c1: Real, d1: Real, a2: Real, b2: Real,

c2: Real, d2: Real, a3: Real, b3: Real, c3: Real, d3: Real): Real = {...}

28 // solves three sytems of equations

def solveEquationsVector(a1: Real, b1: Real, c1: Real, a2: Real, b2: Real, c2: Real,

30 a3: Real, b3: Real, c3: Real, aa1: Real, bb1: Real, cc1: Real, aa2: Real,

bb2: Real, cc2: Real, aa3: Real, bb3: Real, cc3: Real, ...): Real = {

32 require((19.49 <= a1) && (a1 <= 19.69) && ...)

34 val x: Real = solveEquation_x(a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, d3)

val y: Real = solveEquation_y(a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, d3)

36 val z: Real = solveEquation_z(a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, d3)

val x2: Real = solveEquation_x(aa1, bb1, cc1, d1, aa2, bb2, cc2, d2, aa3, bb3,

38 cc3, d3)

...

40 (x + y + z + x2 + y2 + z2 + x3 + y3 + z3) / 9.0

}

42 }

Table 4. Runtimes of FPTaylor for individual procedures

case study procedure time (s)

matrix

solveEquationX 56.3
solveEquationY 51.2
solveEquationZ 50.8
solveEquationsVector 380.9

complex

computeCurrentRe 18.8
computeCurrentIm 22.1
computeRadiusVector 1.5
computeDivideVector 53.1
computeReciprocalRadiusV 31.4

Modular Floating-Point Error Analysis 23

2. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive Verifi-
cation of Floating-Point Java Programs in KeY. In: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) (2021). https://doi.org/10.1007/
978-3-030-72013-1_13

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice, Lecture
Notes in Computer Science, vol. 10001. Springer (2016). https://doi.org/10.1007/
978-3-319-49812-6

4. Baranowski, M.S., Briggs, I.: Global Extrema Locator Parallelization for Interval
Arithmetic. https://github.com/soarlab/gelpia (2023), accessed: 20 April 2023

5. Becker, H., Zyuzin, N., Monat, R., Darulova, E., Myreen, M.O., Fox, A.C.J.: A
Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4.
In: Formal Methods in Computer Aided Design (FMCAD) (2018). https://doi.org/
10.23919/FMCAD.2018.8603019

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A Static Analyzer for Large Safety-Critical Software. In: Programming
Language Design and Implementation (PLDI) (2003). https://doi.org/10.1145/
781131.781153

7. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
Equation Numerical Resolution: A Comprehensive Mechanized Proof of a C Pro-
gram. Journal of Automated Reasoning 50(4) (2013). https://doi.org/10.1007/
s10817-012-9255-4

8. Cousot, P., Cousot, R.: Modular Static Program Analysis. In: Compiler Construction
(CC) (2002). https://doi.org/10.1007/3-540-45937-5_13

9. Damouche, N., Martel, M., Panchekha, P., Qiu, C., Sanchez-Stern, A., Tatlock,
Z.: Toward a Standard Benchmark Format and Suite for Floating-Point Analysis.
In: International Workshop on Numerical Software Verification (NSV) (2016).
https://doi.org/10.1007/978-3-319-54292-8_6

10. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy
- Framework for Analysis and Optimization of Numerical Programs. In: Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) (2018).
https://doi.org/10.1007/978-3-319-89960-2_15

11. Darulova, E., Kuncak, V.: Towards a Compiler for Reals. ACM Transactions
on Programming Languages and Systems (TOPLAS) 39(2), 1–28 (2017). https:
//doi.org/10.1145/3014426

12. Das, A., Briggs, I., Gopalakrishnan, G., Krishnamoorthy, S., Panchekha, P.: Scalable
yet Rigorous Floating-Point Error Analysis. In: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC) (2020). https:
//doi.org/10.1109/SC41405.2020.00055

13. De Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted Verification of Elementary
Functions Using Gappa. In: ACM Symposium on Applied Computing (2006).
https://doi.org/10.1145/1141277.1141584

14. Filliâtre, J., Paskevich, A.: Why3 - Where Programs Meet Provers. In: Eu-
ropean Symposium on Programming (ESOP) (2013). https://doi.org/10.1007/
978-3-642-37036-6_8

15. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2), 13 (2007). https://doi.org/10.1145/1236463.1236468

16. Fumex, C., Marché, C., Moy, Y.: Automating the Verification of Floating-Point
Programs. In: Verified Software: Theories, Tools, and Experiments (VSTTE) (2017).
https://doi.org/10.1007/978-3-319-72308-2_7

https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://github.com/soarlab/gelpia
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://doi.org/10.1007/s10817-012-9255-4
https://doi.org/10.1007/s10817-012-9255-4
https://doi.org/10.1007/s10817-012-9255-4
https://doi.org/10.1007/s10817-012-9255-4
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1145/3014426
https://doi.org/10.1145/3014426
https://doi.org/10.1145/3014426
https://doi.org/10.1145/3014426
https://doi.org/10.1109/SC41405.2020.00055
https://doi.org/10.1109/SC41405.2020.00055
https://doi.org/10.1109/SC41405.2020.00055
https://doi.org/10.1109/SC41405.2020.00055
https://doi.org/10.1145/1141277.1141584
https://doi.org/10.1145/1141277.1141584
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1007/978-3-319-72308-2_7
https://doi.org/10.1007/978-3-319-72308-2_7

24 Rosa Abbasi and Eva Darulova(B)

17. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: Safety and Robustness Certification of Neural Networks with Abstract
Interpretation. In: Symposium on Security and Privacy (SP) (2018). https://doi.
org/10.1109/SP.2018.00058

18. Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI) (2011). https:
//doi.org/10.1007/978-3-642-18275-4_17

19. Goubault, E., Putot, S., Védrine, F.: Modular Static Analysis with Zono-
topes. In: Static Analysis Symposium (SAS) (2012). https://doi.org/10.1007/
978-3-642-33125-1_5

20. Harrison, J.: Floating Point Verification in HOL Light: The Exponential Func-
tion. Formal Methods in System Design 16(3) (2000). https://doi.org/10.1023/A:
1008712907154

21. Izycheva, A., Darulova, E.: On Sound Relative Error Bounds for Floating-Point
Arithmetic. In: Formal Methods in Computer Aided Design (FMCAD) (2017).
https://doi.org/10.23919/FMCAD.2017.8102236

22. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Computer Aided Verification (CAV) (2009). https://doi.org/10.1007/
978-3-642-02658-4_52

23. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
A Software Analysis Perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

24. Magron, V., Constantinides, G., Donaldson, A.: Certified Roundoff Error Bounds
using Semidefinite Programming. ACM Transactions on Mathematical Software
(TOMS) 43(4), 1–31 (2017). https://doi.org/10.1145/3015465

25. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. So-
ciety for Industrial and Applied Mathematics (2009). https://doi.org/10.1137/1.
9780898717716

26. Moscato, M., Titolo, L., Dutle, A., Munoz, C.A.: Automatic Estimation of Verified
Floating-Point Round-off Errors via Static Analysis. In: International Conference
on Computer Safety, Reliability, and Security (SAFECOMP). pp. 213–229 (2017).
https://doi.org/10.1007/978-3-319-66266-4_14

27. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamaric, Z., Gopalakr-
ishnan, G.: Rigorous Estimation of Floating-Point Round-Off Errors with Symbolic
Taylor Expansions. ACM Trans. Program. Lang. Syst. 41(1), 2:1–2:39 (2019).
https://doi.org/10.1145/3230733

28. Titolo, L., Feliú, M.A., Moscato, M.M., Muñoz, C.A.: An Abstract Interpretation
Framework for the Round-Off Error Analysis of Floating-Point Programs. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI) (2018). https:
//doi.org/10.1007/978-3-319-73721-8_24

https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-642-33125-1_5
https://doi.org/10.1007/978-3-642-33125-1_5
https://doi.org/10.1007/978-3-642-33125-1_5
https://doi.org/10.1007/978-3-642-33125-1_5
https://doi.org/10.1023/A:1008712907154
https://doi.org/10.1023/A:1008712907154
https://doi.org/10.1023/A:1008712907154
https://doi.org/10.1023/A:1008712907154
https://doi.org/10.23919/FMCAD.2017.8102236
https://doi.org/10.23919/FMCAD.2017.8102236
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/3015465
https://doi.org/10.1145/3015465
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1145/3230733
https://doi.org/10.1145/3230733
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24

	Modular Optimization-Based Roundoff Error Analysis of Floating-Point Programs

