
REST: Integrating Term Rewriting with Program
Verification
Zachary Grannan !�

University of British Columbia, Vancouver, Canada

Niki Vazou ! �

IMDEA Software Institute, Madrid, Spain

Eva Darulova1 ! �

Uppsala University, Uppsala, Sweden

Alexander J. Summers !�

University of British Columbia, Vancouver, Canada

Abstract
We introduce REST, a novel term rewriting technique for theorem proving that uses online termination
checking and can be integrated with existing program verifiers. REST enables flexible but terminating
term rewriting for theorem proving by: (1) exploiting newly-introduced term orderings that are more
permissive than standard rewrite simplification orderings; (2) dynamically and iteratively selecting
orderings based on the path of rewrites taken so far; and (3) integrating external oracles that allow
steps that cannot be justified with rewrite rules. Our REST approach is designed around an easily
implementable core algorithm, parameterizable by choices of term orderings and their implementa-
tions; in this way our approach can be easily integrated into existing tools. We implemented REST as
a Haskell library and incorporated it into Liquid Haskell’s evaluation strategy, extending Liquid
Haskell with rewriting rules. We evaluated our REST implementation by comparing it against both
existing rewriting techniques and E-matching (as used in most SMT solvers) and by showing that it
can be used to supplant manual lemma application in many existing Liquid Haskell proofs.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases term rewriting, program verification, theorem proving

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.13

Related Version Extended Version: https://arxiv.org/abs/2202.05872 [26]

1 Introduction

For all disjoint sets s0 and s1, the identity (s0 ∪ s1) ∩ s0 = s0 can be proven in many ways.
Informally accepting this property is easy, but a machine-checked formal proof may require
the instantiation of multiple set theoretic axioms. Analogously, further proofs relying on this
identity may themselves need to apply it as a previously-proven lemma. For example, proving
functional correctness of any program that relies on a set data structure typically requires
the instantiation of set-related lemmas. Manual instantiation of such universally quantified
equalities is tedious, and the burden becomes substantial for more complex proofs: a proof
author needs to identify exactly which equalities to instantiate and with which arguments;
in the context of program verification, a wide variety of such lemmas are typically available.
Given this need, most program verifiers provide some automated technique or heuristics for
instantiating universally quantified equalities.

For the wide range of practical program verifiers that are built upon SMT solvers (e.g.,
[35, 23, 51, 39, 47, 45]), quantified equalities can naturally be expressed in the SMT solver’s

∗ This work was partly done while the author was at MPI-SWS.

© Zachary Grannan, Niki Vazou, Eva Darulova, and Alexander J. Summers;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 13; pp. 13:1–13:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zgrannan@cs.ubc.ca
https://orcid.org/0000-0002-7042-7013
mailto:niki.vazou@imdea.org
https://orcid.org/0000-0003-0732-5476
mailto:eva.darulova@it.uu.se
https://orcid.org/0000-0002-6848-3163
mailto:alex.summers@ubc.ca
https://orcid.org/0000-0001-5554-9381
https://doi.org/10.4230/LIPIcs.ECOOP.2022.13
https://arxiv.org/abs/2202.05872
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 REST: Integrating Term Rewriting with Program Verification

logic. However, relying solely on such solvers’ E-matching techniques [19] for quantifier
instantiation (as the majority of these verifiers do) can lead to both non-termination and
incompletenesses that may be unpredictable [34] and challenging to diagnose [7]. Theory
and techniques for proving termination and completeness of encodings using E-matching
for equality reasoning is relatively unexplored [21]; the inherent treatment of terms modulo
equalities makes standard term orderings based on term structure unsound.

A classical alternative approach to automating equality reasoning is term rewriting [28],
which can be used to encode lemma properties as (directed) rewrite rules, matching terms
against the existing set of rules to identify potential rewrites; the termination of these systems
is a well-studied problem [16]. Although SMT solvers often perform rewriting as an internal
simplification step, verifiers built on top typically cannot access or customize these rules,
e.g., to add previously-proved lemmas as rewrite rules. By contrast, many mainstream proof
assistants (e.g., Coq [11], Isabelle/HOL [40], Lean [5]) provide automated, customizable term
rewriting tactics. However, the rewriting functionalities of mainstream proof assistants either
do not ensure the termination of rewriting (potentially resulting in divergence, for example
Isabelle) or enforce termination checks that are overly restrictive in general, potentially
rejecting necessary rewrite steps (for example, Lean).

In this paper, we present REST (REwriting and Selecting Termination orderings): a novel
technique that equips program verifiers with automatic lemma application facilities via
term rewriting, enabling equational reasoning with complementary strengths to E-matching-
based techniques. While term rewriting in general does not guarantee termination, our
technique weaves together three key technical ingredients to automatically generate and
explore guaranteed-terminating restrictions of a given rewriting system while typically
retaining the rewrites needed in practice: (1) REST compares terms using well-quasi-orderings
derived from (strict) simplification orderings; thereby facilitating common and important
rules such as commutativity and associativity properties. (2) REST simultaneously considers an
entire family of term orderings; selecting the appropriate term ordering to justify rewrite steps
during term rewriting itself. (3) REST allows integration of an external oracle that generates
additional steps outside of the term rewriting system. This allows the incorporation of
reasoning steps awkward or impossible to justify via rewriting rules, all without compromising
the termination and relative completeness guarantees of our overall technique.

Contributions and Overview We make the following contributions:
1. We design and present a new approach (REST) for applying term rewriting rules and

simultaneously selecting appropriate term orderings to permit as many rewriting steps as
possible while guaranteeing termination (Sec. 3).

2. We introduce ordering constraint algebras, an abstraction for reasoning effectively about
multiple (and possibly infinitely many) term orderings simultaneously (Sec. 4).

3. We introduce and formalize recursive path quasi-orderings (RPQOs) derived from the
well-known recursive path ordering [15] (Sec. 4.1.2). RPQOs are more permissive than
classical RPOs, and so let us prove more properties.

4. We formalize and prove key results for our technique: soundness, relative completeness,
and termination (Sec. 5).

5. We implement REST as a stand-alone library, and integrate the REST library into Liquid
Haskell to facilitate automatic lemma instantiation (Sec. 6).

6. We evaluate REST by comparison to other term rewriting tactics and E-matching-based
axiomatization, and show that REST can simplify equational reasoning proofs (Sec. 7).

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:3

Name Formula
idem-union X ∪X = X

idem-inter X ∩X = X

empty-union X ∪ ∅ = X

empty-inter X ∩ ∅ = ∅
commut-union X ∪ Y = Y ∪X
symm-inter X ∩ Y = Y ∩X
distrib-union (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z)
distrib-inter (X ∩ Y) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z)
assoc-union X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z

Figure 1 Set identities used for examples in this section. Variables X, Y, Z are implicitly quantified.
We write the binary functions ∪, ∩ infix; along with (nullary) ∅ these are fixed function symbols.

We discuss related work in Sec. 8; we begin (Sec. 2) by identifying five key challenges of a
reliable and automatic integration of term rewriting into a program verification tool.

2 Five Challenges for Automating Term Rewriting

In this section, we describe five key challenges that naturally arise when term rewriting is
used for program verification and outline how REST is designed to address them. To illustrate
the challenges, we use simple verification goals that involve uninterpreted functions and the
set operators (∅, ∪, ∩) that satisfy the standard properties of Figure 1. The variables x, y, z
are implicitly quantified2 in these rules. In formalizations of set theory, such properties may
be assumed as (quantified) axioms, or proven as lemmas and then used in future proofs.

Term rewriting systems (defined formally in Sec. 5) are a standard approach for formally
expressing and applying equational reasoning (rewriting terms via known identities). A term
rewriting system consists of a finite set of rewrite rules, each consisting of a pair of a source
term and a target term, representing that terms matching a rule’s source can be replaced
by corresponding terms matching its target. For example, the rewrite rule X ∪ ∅ → X can
replace set unions of some set X and the empty set with the corresponding set X. Rewrite
rules are applied to a term t by identifying some subterm of t which is equal to a rule’s
source under some substitution of the source’s free variables (here, X, but not constants
such as ∅); the subterm is then replaced with the correspondingly substituted target term.
This rewriting step induces an equality between the original and new terms. For instance,
the example rewrite rule above can be used to rewrite a term f(s0 ∪ ∅) into f(s0), inducing
an equality between the two.

Rewrite rules classically come with two restrictions: the free variables of the target
must all occur in the source and the source must not be a single variable. This precludes
rewrite rules which invent terms, such as ∅ → X ∩ ∅, and those that trivially lead to infinite
derivations. Under these restrictions, the first four identities induce rewrite rules from
left-to-right (which we denote by e.g., idem-inter→), while the remaining induce rewrite
rules in both directions (e.g., assoc-union→ vs. assoc-union←).

2 over sets; we omit explicit types in such formulas, whose type-checking is standard.

ECOOP 2022

13:4 REST: Integrating Term Rewriting with Program Verification

Next, we present a simple proof obligation taken from [36] in the style of equational
reasoning (calculational proofs) supported in the Dafny program verifier [35].

I Example 1. We aim to prove, for two sets s0 and s1 and some unary function f on sets,
that, if the sets are disjoint (that is, s1 ∩ s0 = ∅), then f((s0 ∪ s1) ∩ s0) = f(s0).

Equational Proof: f((s0 ∪ s1) ∩ s0) = f((s0 ∩ s0) ∪ (s1 ∩ s0)) (distrib-union→)
= f(s0 ∪ (s1 ∩ s0)) (idem-inter→)
= f(s0 ∪ ∅) (disjointness ass.→)
= f(s0) (empty-union→)

(Possible Term Ordering, as explained shortly: RPO instance with ∩ > ∪)

This manual proof closely follows the user annotations employed in the corresponding
Dafny proof [36]; the application of the function f serves only to illustrate equational
reasoning on subterms. Every step of the proof could be explained by term rewriting, hinting
at the possibility of an automated proof in which term rewriting is used to solve such proof
obligations. In particular, taking the term rewriting system naturally induced by the set
identities of Figure 1 along with the assumed equality expressing disjointness of s0 and s1
results in a term rewriting system in which the four proof steps are all valid rewriting steps.

In the remainder of the section, we consider what it would take to make term rewriting
effective for reliably automating such verification tasks. Perhaps unsurprisingly, there are
multiple problems with the simplistic approach outlined so far. The first and most serious is
that term rewriting systems in general do not guarantee termination; a proof search may
continue indefinitely by repeatedly applying rewrite rules. For example, the rules distrib-union
and distrib-inter can lead to an infinite derivation (s0 ∪ s1) ∩ s2 → (s0 ∩ s2) ∪ (s1 ∩ s2)→
(s0 ∪ (s1 ∩ s2)) ∩ (s2 ∪ (s1 ∩ s2))→ . . .

Challenge 1: Unrestricted term rewriting systems do not guarantee termination.

To ensure termination (as proved in Theorem 22) REST follows the classical approach of
restricting a term-rewriting system to a variant in which sequences of term rewrites (rewrite
paths) are allowed only if each consecutive pair of terms is ordered according to some term
ordering which rules out infinite paths.

For example, Recursive path orderings (RPOs) [15] define well-founded orders >T on
terms T based on an underlying well-founded strict partial order > on function symbols.
Intuitively, such orderings use > to order terms with different top-level function symbols,
combined with the properties of a simplification order [14] (e.g., compatibility with the
subterm relation). Different choices of the underlying > parameter yield different RPO
instances that order different pairs of terms; in particular, potentially allowing or disallowing
certain rewrite paths.

In Example 1, an RPO based on a partial order where ∩ > ∪ and ∩ > ∅ permits all the
rewriting steps, that is, the left-hand-side of each equation is greater than the right-hand-side.

Sadly, this ordering will not permit the rewriting steps required by our next example.

I Example 2. We aim to prove, for two sets s0 and s1 and some unary function f on sets,

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:5

that, if s1 is a subset of s0 (that is, s0 ∪ s1 = s0), then f((s0 ∩ s1) ∪ s0) = f(s0).

Equational Proof: f((s0 ∩ s1) ∪ s0) = f((s0 ∪ s0) ∩ (s1 ∪ s0)) (distrib-inter→)
= f(s0 ∩ (s1 ∪ s0)) (idem-union→)
= f(s0 ∩ (s0 ∪ s1)) (commut-union→)
= f(s0 ∩ s0) (subset ass.→)
= f(s0) (idem-inter→)

(Possible Term Ordering: RPQO instance, explained shortly, with ∪ > ∩)

An RPO based on an ordering where ∩ > ∪ (as required by Example 1) will not permit the
first step of this proof (since the RPO ordering first compares the top level function symbols).
Instead, this step requires an RPO based on an ordering where ∪ > ∩. To accept both this
proof step and the Example 1 we need different restrictions of the rewrite rules for different
proofs; in particular, different rewrite paths may be ordered according to RPOs that are
based on different function orderings.

To generalize this problem we will call RPOs a term ordering family that is parametric
with respect to the underlying function ordering. Thus, a concrete RPO term ordering (called
an instance of the family) is obtained after the parametric function ordering is instantiated.
With this terminology, the next challenge can be stated as follows:

Challenge 2: Different proofs require different term orderings within a family.

Note that enumerating all term orderings in a term ordering family is typically impractical
(this set is often very large and may be infinite). To address this challenge, REST uses a novel
algebraic structure (Sec. 4.2) to allow for an abstract representation of sets of term orderings
with which one can efficiently check whether any instance of a chosen term ordering family
can orient the necessary rewrite steps to complete a proof.

Going back to Example 2, the RPO instance with ∪ > ∩ will permit all the steps, apart
from the commutativity axiom expressed by (commut-union→). To permit this step we need
an ordering for which t1 ∪ t2 >T t2 ∪ t1. But for RPO instances, as well as for many other
term orderings, the terms t1 ∪ t2 and t2 ∪ t1 are equivalent and thus cannot be oriented;
associativity axioms are also similarly challenging. Since many proofs require such properties,
it is important in practice for rewriting to support them.

Challenge 3: Strict orderings restrict commutativity and associativity steps.

To address this challenge REST relaxes the strictness constraint by requiring the chosen term
ordering family to consist (only) of thin well-quasi-orderings (Def. 5). Intuitively, such
orderings permit rewriting to terms which are equal according to the ordering, but such
equivalence classes of terms must be finite. In Sec. 4 we show how to lift well-known families
of term orderings to more-permissive families of thin well-quasi-orders. In particular, we show
how to lift RPOs to a particularly powerful family of term orderings that we call recursive
path quasi-orderings (RPQOs) (Def. 10), whose instances allow us to accept Example 2.

Despite the permissiveness of RPQOs, there remain some rewrite derivations that will
be rejected by all term orderings in the RPQO family. For example, consider the following
proof that set union is monotonic with respect to the subset relation:

ECOOP 2022

13:6 REST: Integrating Term Rewriting with Program Verification

I Example 3. We aim to prove, for sets s0, s1, and s2, that, if s1 is a subset of s0 (that is,
s0 ∪ s1 = s0), then (s2 ∪ s1) ∪ (s2 ∪ s0) = s2 ∪ s0.

Equational Proof: (s2 ∪ s1) ∪ (s2 ∪ s0) = s2 ∪ (s1 ∪ (s2 ∪ s0)) (assoc-union←)
= s2 ∪ ((s1 ∪ s2) ∪ s0) (assoc-union→)
= s2 ∪ ((s2 ∪ s1) ∪ s0) (commut-union→)
= s2 ∪ (s2 ∪ (s1 ∪ s0)) (assoc-union←)
= s2 ∪ (s2 ∪ (s0 ∪ s1)) (commut-union→)
= s2 ∪ (s2 ∪ s0) (subset ass.→)
= (s2 ∪ s2) ∪ s0 (assoc-union→)
= s2 ∪ s0 (idem-union→)

(Possible Term Ordering: any KBQO instance)

The above rewrite rule steps cannot be oriented by any RPQO, but are trivially oriented
by a quasi-ordering that is based on the syntactic size of the term, e.g., a quasi-ordering
based on the well-known Knuth-Bendix family of term orderings [31]. Yet, a Knuth-Bendix
quasi-ordering (KBQO, defined in Sec. 4) cannot be used on our previous two examples;
fixing even a single choice of term ordering family would still be too restrictive in general.

Challenge 4: Some proofs require different families of term orderings.

To address this challenge, REST (Sec. 3.2) is defined parametrically in the choice and repre-
sentation of a term ordering family.

Finally, although equational reasoning is powerful enough for these examples, general
verification problems usually require reasoning beyond the scope of simple rewriting. For
example, simply altering Example 1 to express the disjointness hypothesis instead via
cardinality as |s0∩ s1| = 0 means that, to achieve a similar proof, reasoning within the theory
of sets is necessary to deduce that this hypothesis implies the equality needed for the proof;
this is beyond the abilities of term rewriting.

Challenge 5: Program verification needs proof steps not expressible by rewriting.

To address this challenge, our REST approach allows the integration of an external oracle that
can generate equalities not justifiable by term rewriting (Sec. 3.3).

3 The REST Approach

We develop REST to tackle the above five challenges and integrate a flexible, expressive, and
guaranteed-terminating term rewriting system with a verification tool. REST consists of an
interface that defines term orderings and an algorithm that explores the terminating rewrite
paths. In Sec. 3.1 we describe the representation of term orderings in REST and how they
address Challenges 2 and 4. In Sec. 3.2 we describe the REST algorithm that is parametric to
these orderings and Sec. 3.3 describes the integration with external oracles (Challenge 5).

3.1 Representation of Term Orderings in REST

Rather than considering individual term orderings, REST operates on indexed sets (families)
of term orderings (whose instances must all be thin well-quasi-orderings [Def. 5]).

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:7

I Definition 4 (Term Ordering Family). A term ordering family Γ is a set of thin well-quasi-
orderings on terms, indexed by some parameters P . An instance of the family is a term
ordering obtained by a particular instantiation of P .

For example, the recursive path ordering is defined parametrically with respect to a
precedence on function symbols, and therefore defines a term ordering family indexed by
this choice of function symbol ordering.

A core concern of REST is determining whether any instance of a given term ordering
family can orient a rewrite path. However, term ordering families cannot directly compare
terms; doing so requires choosing an ordering inside the family. The root of Challenge 2
is that choosing an ordering in advance is too restrictive: different orderings are necessary
to complete different proofs. The idea behind REST’s search algorithm is to address this
challenge by simultaneously considering all orderings in the family when considering rewrite
paths and continuing the path so long as it can be oriented by any ordering.

To demonstrate the technique, we show how REST’s approach can be derived from a
naïve algorithm. The purpose of the algorithm is to determine if any ordering in a family Γ
can orient a path t1 → . . .→ tn; i.e., if there is a >T ∈ Γ such that t1 >T . . . >T tn.

orients : (Set O × List T)→ Bool
orients(Γ, ts) =
os := Γ; (1)
for i ∈ 1 to |ts| − 1 {
os := {>T ∈ os | tsi >T tsi+1}; (2)
if (os = ∅) (3)

return false;
}
return true;

orients : (OCA× List T))→ Bool
orients(〈>, refine, sat〉, ts) =
c := >;
for i ∈ 1 to |ts| − 1 {
c := refine(c, tsi, tsi+1);
if (not(sat(c)))

return false;
}
return true;

Figure 2 Two algorithms that determine if an ordering in the term ordering family Γ can orient
a path of terms ts. Left presents the naïve, exhaustive algorithm. Right is using the ordering
constraint algebra 〈>, refine, sat〉 that returns true iff an ordering in Γ can orient ts without explicitly
constructing any term orderings. Ois the type of a term ordering.

The naïve algorithm is depicted on the left of Figure 2. The naïve algorithm works
iteratively, computing the set of orderings os that can orient an increasingly-long path,
short-circuiting if the set becomes empty. The algorithm enumerates each ordering in Γ
and compares terms with each ordering (potentially multiple times). Unfortunately, this
enumeration is not practical: some term ordering families have infinite or prohibitively large
numbers of instances. REST avoids these issues by allowing the set of term orderings to be
abstracted via a structure called an Ordering Constraint Algebra (OCA, Def. 14 of Sec. 4.2).

An OCA for a term ordering family Γ consists of a type C along with four parameters
γ : C → P(Γ), > : C, refine : C → T → T → C, and sat : C → Bool. C is a type whose
elements represent subsets of Γ. The function γ is the concretisation function of the OCA,
not needed programmatically but instead defining the meaning of elements of C in terms
of the subsets of the term ordering family they represent. The remaining three functions
correspond to the operations on sets of term orderings used in lines (1), (2), and (3) of the
naïve algorithm. > represents the set of all term orderings in Γ, refine(c, t, u) filters the set of
orderings represented by c to include only those where t >T u, and sat(c) is a predicate that
returns true if the set of orderings represented by c is nonempty. Figure 2 on the right shows

ECOOP 2022

13:8 REST: Integrating Term Rewriting with Program Verification

REST : (OCA×R× T × (T → Set T))→ Set T
REST(〈>, refine, sat〉, R, t0, E) =
o := ∅;
p := [([t0],>)];
while (p is not empty){

pop(ts, c) from p;
t := last ts;
o := o ∪ {t};
foreach (t′such that t′ 6∈ ts ∧ (t→R t′ ∨ t′ ∈ E(t))){

if (t′ ∈ E(t) ∨ (t→R t′ ∧ sat(refine(c, t, t′)))){
push (ts ++ [t′], refine(c, t, t′)) to p

}
}

}
return o;

Figure 3 The REST algorithm.

how the ordering constraint algebra can be used to perform an equivalent computation to the
naïve algorithm, without explicitly instantiating sets of term orderings. The OCA plays a role
similar to abstract interpretation in a program analysis, where C is an abstraction over sets of
term orderings, and the results of the abstract operations on C correspond to their concrete
equivalents. Namely, we have γ(>) = Γ, γ(refine(c, tl, tr)) = {< | < ∈ γ(c) ∧ tl < tr}, and
sat(c) ⇔ γ(c) 6= ∅.

The ordering constraint algebra enables three main advantages compared to direct
computation with sets of term orderings:
1. The number of term orderings can be very large, or even infinite, thus making enumeration

of the entire set intractable.
2. An OCA can provide efficient implementations for refine and sat by exploiting properties

of the term ordering family. Comparing terms using the constituent term orderings
requires repeating the comparison for each ordering, despite the fact that most orderings
will differ in ways that are irrelevant for the comparison.

3. The OCA does not impose any requirements on the type of C or the implementation
of >, refine, and sat. For example, an OCA can use > and refine to construct logical
formulas, with sat using an external solver to check their satisfiability. Alternatively,
it could define C to be sets of term orderings that are reasoned about explicitly, and
implement >, refine, and sat as the operations of the naïve algorithm.

We now describe how the REST algorithm uses the OCA to explore rewrite paths.

3.2 The REST Algorithm
Figure 3 presents the REST algorithm. The algorithm takes four parameters. The first
parameter is an OCA 〈>, refine, sat〉, as discussed above. The algorithm’s second parameter,
R, is a finite set of term rewriting rules (not required to be terminating); for example, we
could pass the oriented rewrite rules corresponding to Figure 1. The third parameter t0 is
the term from which term rewrites are sought. The final parameter E acts as an external
oracle, generating additional rewrite steps that need not follow from the term rewriting rules

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:9

f(s0) f(s0) f(s0)

f(s0 ⋃ ∅) f(s0 ⋂ s0)f(s0 ⋃ ∅)

f(s0 ⋃ (s1 ⋂ s0)) f((s0 ⋂ s0) ⋃ ∅)

f((s0 ⋂ s0) ⋃ (s1 ⋂ s0))

f((s0 ⋃ s1) ⋂ s0)
(x ⋃ y) ⋂ z → (x ⋂ z) ⋃ (y ⋂ z)

x ⋂ x → x s1 ⋂ s0 → ∅

s1 ⋂ s0 → ∅ x ⋂ x → x x ⋃ ∅ → x

x ⋂ x → xx ⋃ ∅ → xx ⋃ ∅ → x

f((s0 ⋃ ∅) ⋂ (s0 ⋃ ∅)

f((s0 ⋃ (s1 ⋂ s0)) ⋂ (s0 ⋃ (s1 ⋂ s0)))

f((s0 ⋃ s1) ⋂ (s0 ⋃ s0))

Figure 4 A visualization of REST running on the term from Example 1. Each path through the
tree shown represents a rewrite path uncovered by our algorithm; the edge labels show the rewrite
rule applied. The red dotted lines indicate rewrite steps rejected by REST.

R. To simplify the explanation, we will initially assume that E = λt.∅, i.e., this parameter
has no effect. Our algorithm produces a set of terms, each of which are reachable by some
rewrite path beginning from t0, and for which some ordering allows the rewrite path. The
algorithm addresses Challenge 1 (termination; Theorem 22) because every path must be
finite: no ordering could orient an infinite path.

REST operates in worklist fashion, storing in p a list of pairs (ts, c) where ts is a non-empty
list of terms representing a rewrite path already explored (the head of which is always t0)
and c tracks the ordering constraints of the path so far. The set o records the output terms
(initially empty): all terms discovered equal to t0 via the rewriting paths explored.

While there are still rewrite paths to be extended, i.e., p is not empty, a tuple (ts, c) is
popped from p. REST puts t, i.e., the last term of the path, into the set of output terms o
and considers all terms t′ that are: (a) not already in the path and (b) reachable by a single
rewrite step of R (or returned by the function E explained later). The crucial decision of
whether or not to extend a rewrite path with the additional step t→ t′ is handled in the if
check of REST. This check is to guarantee termination: the sat check enforces that we only
add rewrite steps which would leave the extended path still justifiable by some term ordering.

Figure 4 visualizes the rewrite paths explored by our algorithm for a run corresponding
to the problem from Example 1, using the OCA for the recursive path quasi-ordering
(Sec. 4.2.1)3. The manual proof in Example 1 corresponds to the right-most path in this tree;
the other paths apply the same reasoning steps in different orders. In our implementation,
we optimize the algorithm to avoid re-exploring the same term multiple times unless this
could lead to further rewrites being discovered (cf. Sec. 6).

The arrow from the root of the tree to its child corresponds to the first rewrite REST

applies: f((s0 ∪ s1)∩ s0)→ f((s0 ∩ s0)∪ (s1 ∩ s0)). This rewrite step can only be oriented by
RPQOs with precedence ∩ > ∪; therefore applying this rewrite constrains the set of RPQOs
that REST must consider in subsequent applications. For example, the rewrite to the left child
of f((s0 ∩ s0) ∪ (s1 ∩ s0)) can only be oriented by RPQOs with precedence ∪ > ∩. Since no
RPQO can have both ∩ > ∪ and ∪ > ∩, no RPQO can orient the entire path from the root;
REST must therefore reject the rewrite. On the other hand, the rewrite to the right child can
be oriented by any RPQO where s0 > ∅, s1 > ∅, or ∩ > ∅. The path from the root can thus
continue down the right-hand side, as there are RPQOs that satisfy both ∩ > ∪ and the

3 We omit the commutativity rules from this run, just to keep the diagram easy to visualize, but our
implementation handles the example easily with or without them.

ECOOP 2022

13:10 REST: Integrating Term Rewriting with Program Verification

other conditions. The subsequent rewrites down the right-hand side do not impose any new
constraints on the ordering: f((s0 ∩ s0) ∪ ∅) >T f(s0 ∩ s0) >T f(s0) in all RPQOs.

Similarly, REST will prove Example 2 but will reject Example 3 when the input OCA
represents RPQO orderings. As shown in our benchmarks (Table 2 of Sec. 7), Example 3 is
solved by REST with an OCA for the Knuth-Bendix term ordering family.

3.3 Integrating an External Oracle
Finally, to tackle Challenge 5, we turn to the (so far ignored) third parameter of the algorithm,
the external oracle E . In the example variant presented at the end of Sec. 2, such a function
might supply the rewrite step s0 ∩ s1 → ∅ by analysis of the logical assumption |s0 ∩ s1| = 0,
which goes beyond term-rewriting. More generally, any external solver capable of producing
rewrite steps (equal terms) can be connected to our algorithm via E . In our implementation
in Liquid Haskell, we use the pre-existing Proof by Logical Evaluation (PLE) technique [52],
which complements rewriting with the expansion of program function definitions, under
certain checks made via SMT solving. Our only requirements on the oracle E are that it is
bounded (finitely-branching) and strongly normalizing (cf. Sec. 5).

Our algorithm therefore flexibly allows the interleaving of term rewriting steps and
external oracle steps; we avoid the potential for this interaction to cause non-termination by
conditioning any further rewriting steps on the fact that the entire path (including the steps
inserted by the oracle) can be oriented by at least one candidate term ordering.

The combination of our interface for defining term orderings via ordering constraint
algebras, a search algorithm that effectively explores all rewrites enabled by the orderings,
and the flexible possibility of combination with external solvers via the oracle parameter
makes REST very adaptable and powerful in practice.

4 Well-Quasi-Orderings and the Ordering Constraint Algebra

Term orderings are typically defined as strict well-founded orderings; this requirement ensures
that rewriting will obtain a normal form. However, as mentioned in Challenge 3, the
restriction to strict orderings limits what can be achieved with rewriting. In this section we
describe the derivation of well-quasi-orderings from strict orderings (Sec. 4.1) and introduce
Knuth-Bendix quasi-orderings (Sec. 4.1.1) and recursive path quasi-orderings (Sec. 4.1.2),
two novel term ordering families respectively based on the classical recursive path and
Knuth-Bendix orderings. In addition, we formally introduce ordering constraint algebras
(Sec. 4.2) and use them to develop an efficient ordering constraint algebra for RPQOs.

4.1 Well-Quasi-Orderings
We define well-quasi-orderings in the standard way.

I Definition 5 (Well-Quasi-Orderings). A relation > is a quasi-order if it is reflexive and
transitive. Given elements t and u in S, we say t ≈ u if t > u and u > t. A quasi-order > is
also characterized as:
1. WQO, when for all infinite chains x1, x2, . . . there exists an i, j, i < j such that xj > xi,
2. thin, when forall t ∈ S, the set {u ∈ S | t ≈ u} is finite, and
3. total, when for all t, u ∈ S either t > s or s > t.

Well-quasi-orderings are not required to be antisymmetric, however the corresponding
strict part of the ordering must be well-founded. Hence, a WQO derives a strict ordering over

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:11

equivalence classes of terms; REST also requires that these equivalence classes are finite (i.e.,
the ordering is thin). With this requirement, REST guarantees termination by exploring only
duplicate-free paths. Many simplification orderings can be converted into more permissive
WQOs. Intuitively, given an ordering >o its quasi-ordering derivation also accepts equal
terms, so we denote it as >o. We next present two such derivations.

4.1.1 Knuth-Bendix Quasi-Orderings (KBQO)
The Knuth-Bendix ordering [31] is a well-known simplification ordering used in the Knuth-
Bendix completion procedure. Here, we present a simplified version of the ordering, used by
REST that is using ordering to only compare ground terms.

I Definition 6. A weight function w is a function F → N, where w(f) > 0 for all nullary
functions symbols, and w(f) = 0 for at most one unary function symbol. w is compatible with
a quasi-ordering >F on F if, for any unary function f such that w(f) > 0, we have f >F g
for all g. w(t) denotes the weight of a term t, such that w(f(t1, . . . , tn)) = w(f)+

∑
16i6n

w(ti).

I Definition 7 (Knuth-Bendix ordering (KBO) on ground terms). The Knuth-Bendix Order-
ing >kbo for a given weight function w and compatible precedence order >F is defined as
f(t1, . . . , tm) = t >kbo u = g(u1, . . . , un) iff w(t) > w(u), and 1) w(t) > w(u), or 2) f >F g,
or 3) f >F g and (t1, . . . , tm) >kbolex (u1, . . . , un). Where >kbolex performs a lexicographic
comparison using >kbo as the underlying ordering.

Intuitively, KBO compares terms by their weights, using >F and the lexicographic
comparison as “tie-breakers” for cases when terms have equal weights. However, as > is
already a well-quasi-ordering on N, we can derive a more general ordering by removing these
tie-breakers and the need for a precedence ordering at all.

I Definition 8 (Knuth-Bendix Quasi-ordering (KBQO)). Given a weight function w, the
Knuth-Bendix quasi-ordering >kbo is defined as t >kbo u iff w(t) > w(u).

The resulting quasi-ordering is simpler to implement and more permissive: t >kbo u

implies t >kbo u; and also enables arbitrary associativity and commutativity axioms as
rewrite rules, since it only considers the weights of the function symbols and no structural
components of the term. One caveat is that REST operates on well-quasi-ordering that are
thin (Def. 5), so it can only consider KBQOs with w(f) > 0 for all unary function symbols f .

However, the fact that KBO and KBQO largely ignore the structure of the term in their
comparison has a corresponding downside: it is not possible to orient distributivity axioms, or
many other axioms that increase the number of symbols in a term. Therefore, we have found
that a WQO derived from the recursive path ordering [15] to be more useful in practice.

4.1.2 Recursive Path Quasi-Orderings (RPQO)
In this section, we define a particular family of orderings designed to be typically useful for
term-rewriting via REST. Our family of orderings is a novel extension of the classical notion
of RPO, designed to also be more compatible with symmetrical rules such as commutativity
and associativity (cf. Challenge 3, Sec. 2).

Like the classical RPO notions, our recursive path quasi-ordering (RPQO) is defined in
three layers, derived from an underlying ordering on function symbols:

The input ordering <F can be any quasi-ordering over F .

ECOOP 2022

13:12 REST: Integrating Term Rewriting with Program Verification

The corresponding multiset quasi-ordering <M(X) lifts an ordering <X over X to an
ordering <M(X) over multisets of X. Intuitively T <M(X) U when U can be obtained
from T by replacing zero or more elements in T with the same number of equal (with
respect to <X) elements, and replacing zero or more elements in T with a finite number
of smaller ones (Def. 9).
Finally, the corresponding recursive path quasi-ordering <rpo is an ordering over terms.
Intuitively f(ts) <rpo g(us) uses <F to compare the function symbols f and g and the
corresponding <M(rpo) to compare the argument sets ts and us (Def. 10).

Below we provide the formal definitions of the multiset quasi-ordering and recursive path
quasi-ordering respectively generalized from the multiset ordering of [18] and the recursive
path ordering [15] to operate on quasi-orderings. For all the three orderings, we write
xl < xr

.= xl 6< xr and xl > xr
.= xl < xr ∧ xr 6< xl.

I Definition 9 (Multiset Ordering). Given a ordering <X over a set X, the derived multiset
ordering <M(X) over finite multisets of X is defined as T <M(X) U iff: 1) U = ∅, or 2)
t ∈ T ∧ u ∈ U ∧ t ≈ u ∧ (T − t) <M(X) (U − u), or 3) t ∈ T ∧ (T − t) <M(X) (U \ {u ∈
U | u <X t}).

I Definition 10 (Recursive Path Quasi-Ordering). Given a basic ordering <F , the recursive
path quasi-ordering (RPQO) is the ordering <rpo over T defined as follows: f(t1, . . . , tm) <rpo
g(u1, . . . , un) iff: 1) f >F g and {f(t1, . . . , tm)} >M(rpo) {u1, . . . , un}, or 2) g >F f and
{t1, . . . , tm} <M(rpo) {g(u1, . . . , un)}, or 3) f ≈ g and {t1, . . . , tm} <M(rpo) {u1, . . . , un}.

I Example 11. As a first example, any RPQO <T used to restrict term rewriting will accept
the rule X + Y → Y +X, since X + Y <T Y +X always holds. Since the top level function
symbol is the same + ≈ +, by Def. 10 (3) we need to show {X,Y } <M(rpo) {Y,X}. By
Def. 9 (2) (choosing both t and u to be X), we can reduce this to {Y } <M(rpo) {Y }; the same
step applied to y reduces this to showing ∅ <M(rpo) ∅ which follows directly from Def. 9 (1).

From this example, we can see that both X + Y <rpo Y +X and Y +X <rpo X + Y hold,
in this case independently of the choice of input ordering <F on function symbols. In our
next example, the choice of input ordering makes a difference.

I Example 12. As a next example, we compare the terms s(X) + Y and s(X + Y). Now
that the outer function symbols are not equal, the order relies on the ordering between +
and s. Let’s assume that + >F s. Now to get s(x) + y <rpo s(X + Y), the first case of
Definition 10 further requires {s(X)+Y } >M(rpo) {X+Y }, which holds if s(X)+y >rpo X+Y .
The outermost symbol for both expressions is +, so we must check the multiset ordering:
{s(X), Y } >M(rpo) {X,Y }, which holds because by case splitting on the relation between
s and X, we can show that s(X) is always greater than X. In short, if + >F s, then
s(X) + Y <rpo s(X + Y).

Developing on our RPQO notion (Def. 10), we consider the set of all such orderings that
are generated by any total, well-quasi-ordering over the operators. We prove that such term
orderings satisfy the termination requirements of Theorem 22. Concretely:

I Theorem 13. If <F is a total, well-quasi-ordering, then 1) <rpo is a well-quasi-ordering,
2) <rpo is thin, and 3) <rpo is thin well-founded.

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:13

4.2 Ordering Constraint Algebras
Ordering constraint algebras play a crucial role in the REST algorithm (Sec. 3.2), by enabling
the algorithm to simultaneously consider an entire family of term orderings during the
exploration of rewrite paths. In this section, we provide a formal definition for ordering
constraint algebras and describe the construction of an algebra for the RPQO.

I Definition 14 (Ordering Constraint Algebra). An Ordering Constraint Algebra (OCA) over
the set of terms T and term ordering family Γ, is a tuple A(T,Γ)

.= 〈C, γ,>, refine, sat〉, where:
1. C, the constraint language, can be any non-empty set. Elements of C are called constraints,

and are ranged over by c.
2. γ, the concretization function of A(T,Γ), is a function from elements of C to subsets of Γ.
3. >, the top constraint, is a distinguished constant from C, satisfying γ(>) = Γ.
4. refine, the refinement function, is a function C → T → T → C, satisfying (for all c, tl, tr)

γ(refine(c, tl, tr)) = {< | < ∈ γ(c) ∧ tl < tr}.
5. sat, the satisfiability function, is a function C → Bool, satisfying (for all c) sat(c) =

true ⇔ γ(c) 6= ∅.
The functions >, refine, and sat are all called from our REST algorithm (Figure 3) and must be
implemented as (terminating) functions to implement REST. Specifically, REST instantiates the
initial path with constraints c = >. When a path can be extended via a rewrite application
tl →R tr, REST refines the prior path constraints c to c′ .= refine(c, tl, tr). Then, the new term
is added to the path only if the new constraints are satisfiable (sat(c′) holds); that is, if c′
admits an ordering that orients the generated path. The function γ need not be implemented
in practice; it is purely a mathematical concept that gives semantics to the algebra.

Given terms T and a finite term ordering family Γ, a trivial OCA is obtained by letting
C = P(Γ), and making γ the identity function; straightforward corresponding elements >,
refine, and sat can be directly read off from the constraints in the definition above.

However, for efficiency reasons (or in order to support potentially infinite sets of orderings,
which our theory allows), tracking these sets symbolically via some suitably chosen constraint
language can be preferable. For example, consider lexicographic orderings on pairs of
constants, represented by a set T of terms of the form p(q1, q2) for a fixed function symbol p
and q1, q2 chosen from some finite set of constant symbols Q. We choose the term ordering
family Γ = {<lex(<) | < is a total order on Q} writing <lex(<) to mean the corresponding
lexicographic ordering on p(q1, q2) terms generated from an ordering < on Q.

A possible OCA over these T and Γ can be defined by choosing the constraint language
C to be formulas: conjunctions and disjunctions of atomic constraints of the forms q1 > q2
and q1 = q2 prescribing conditions on the underlying orderings on Q. The concretization
γ is given by γ(c) = {<lex(<) | < satisfies c}, i.e., a constraint maps to all lexicographic
orders generated from orderings of Q that satisfy the constraints described by c, defined in
the natural way. We define > to be e.g., q = q for some q ∈ Q. A satisfiability function sat
can be implemented by checking the satisfiability of c as a formula. Finally, by inverting the
standard definition of lexicographic ordering, we define:

refine(c, p(q1, q2), p(r1, r2)) = c ∧ (q1 > r1 ∨ (q1 = r1 ∧ q2 > r2))

Using this example algebra, suppose that REST explores two potential rewrite steps
p(a1, a2)→ p(b1, a2)→ p(a1, a1). Starting from the initial constraint c0 = >, the constraint
for the first step c1

.= refine(c0, p(a1, a2), p(b1, a2)) = a1 > b1 ∨ (a1 = b1 ∧ a2 > a2) is
satisfiable, e.g., for any total order for which a1 > b1. However, considering the subsequent
step, the refined constraint c2

.= refine(c1, p(b1, a2), p(a1, a1)), computed as c2 = c1 ∧ (a2 >

ECOOP 2022

13:14 REST: Integrating Term Rewriting with Program Verification

a2 ∨ (a2 = a2 ∧ b1 > a1)) is no longer satisfiable. Note that this allows us to conclude that
there is no lexicographic ordering allowing this sequence of two steps, even without explicitly
constructing any orderings.

We now describe an OCA for RPQOs (Sec. 4.1.2), based on a compact representation of
sets of these orderings.

4.2.1 An Ordering Constraint Algebra for <rpo

The OCA for RPQOs enables their usage in REST’s proof search. One simple but computa-
tionally intractable approach would be to enumerate the entire set of RPQOs that orient a
path; continuing the path so long as the set is not empty. This has two drawbacks. First, the
number of RPQOs grows at an extremely fast rate with respect to the number of function
symbols; for example there are 6, 942 RPQOs describing five function symbols, and 209, 527
over six [29]. Second, most of these orderings differ in ways that are not relevant to the
comparisons made by REST.

Instead, we define a language to succinctly describe the set of candidate RPQOs, by
calculating the minimal constraints that would ensure orientation of the path of terms;
REST continues so long as there is some RPQO that satisfies the constraints. Crucially
the satisfiability check can be performed effectively using an SMT solver without actually
instantiating any orderings.

Before formally describing the language, we begin with some examples, showing how the
ordering constraints could be constructed to guide the termination check of REST.

I Example 15 (Satisfiability of Ordering Constraints). Consider the following rewrite path
given by the rules r1

.= f(g(X), Y)→ g(f(X,X)) and r2
.= f(X,X)→ f(k,X):

f(g(h), k)→r1 g(f(h, h))→r2 g(f(k, h))

To perform the first rewrite REST has to ensure that there exists an RPQO <rpo such that
f(g(h), k) <rpo g(f(h, h)). Following from Definition 10, we obtain three possibilities:
1. f >F g and {f(g(h), k)} >M(rpo) {f(h, h)}, or
2. g >F f and {g(h), k} <M(rpo) {g(f(h, h))}, or
3. f ≈ g and {g(h), k} <M(rpo) {f(h, h)}.
We can further simplify these using the definition of the multiset quasi-ordering (Def. 9).
Concretely, the multiset comparison of (1) always holds, while the multiset comparisons of
(2) and (3) reduce to k >F f ∧ k >F g ∧ k >F h. Thus, we can define the exact constraints
c0 on <rpo to satisfy f(g(h), k) <rpo g(f(h, h)) as

c0
.= f >F g ∨ (k >F f ∧ k >F g ∧ k >F h)

Since there exist many quasi-orderings satisfying this formula (trivially, the one containing
the single relation f >F g), the first rewrite is satisfiable.

Similarly, for the second rewrite, the comparison g(f(z, z)) <rpo g(f(k, z)) entails the
constraints c1

.= z <F k. To perform this second rewrite the conjunction of c0 and c1
must be satisfiable. Since the second disjunct of c0 contradicts c1, the resulting constraints
f >F g ∧ z <F k is satisfiable by an RPQO, thus the path is satisfiable.

I Example 16 (Unsatisfiable Ordering Constraint). As a second example, consider the rewrite
rules r1

.= f(x) → g(s(x)) and r2
.= g(s(x)) → f(h(x)). These rewrite rules can clearly

cause divergence, as applying rule r1 followed by r2 will enable a subsequent application of

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:15

r1 to a larger term. Now let’s examine how our ordering constraint algebra can show the
unsatisfiability of the diverging path:

f(z)→r1 g(s(z)) 6→r2 f(h(z))

f(z) <rpo g(s(z)) requires c0
.= f > g ∧ f > s which is satisfiable, but g(s(z)) <rpo f(h(z))

requires c1
.= (g > f ∧ g > h)∨ (g > f ∧ s > h)∨ (s > f ∧ s > h), which, although satisfiable,

conflicts with c0. Since no RPQO can satisfy both c0 and c1, the rewrite path is unsatisfiable.

Having primed intuition through the examples, we now present a way to compute such
constraints. First, it is clear that we can define an RPQO based on the precedence over
symbols F . Therefore, we define our language of constraints to include the standard logical
operators as well as atoms representing the relations between elements of F , as:

CF
.= f >F g | f ≈ g | CF ∧ CF | CF ∨ CF | > | ⊥

Next, we lift our definition of RPQO and the multiset quasi-ordering to derive functions:
rpo : T → T → CF , and mul : (T → T → CF)→M(T)→M(T)→ CF . rpo is derived by
a straightforward translation of Def. 10:

rpo(f(t1, . . . , tm), g(u1, . . . , un)) = f >F g ∧ mul′(rpo, {f(t1, . . . , tm)}, {u1, . . . , un}) ∨
g >F f ∧ mul(rpo, {t1, . . . , tm}, {g(u1, . . . , un)}) ∨
f ≈ g ∧ mul(rpo, {t1, . . . , tm}, {u1, . . . , un})

where mul′ is the strict multiset comparison: mul′(f, T, U) = mul(f, T, U) ∧ ¬mul(f, U, T).
¬ : CF → CF inverts the constraints, with ¬(f >F g) = f ≈ g ∨ g >F f and ¬(f ≈ g) =
f >F g ∨ g >F f ; the other cases are defined in the typical way.

The definition for mul is more complex. Recall that T <M(X) U when U can be obtained
from T by replacing zero or more elements in T with the same number of equal (with respect
to <X) elements, and by replacing zero or more elements in T with a finite number of smaller
ones. Therefore each justification for {t1, . . . , tm} <M(X) {u1, . . . , un} can be represented by
a bipartite graph with nodes labeled t1, . . . , tm and u1, . . . , un, such that:
1. Each node ui has exactly one incoming edge from some node tj .
2. If a node ti has exactly one outgoing edge, it is labeled either GT or EQ.
3. If a node ti has more than one outgoing edge, it is labeled GT.

mul(f, {t1, . . . , tm}, {u1, . . . , un}) generates all such graphs: for each graph converts each
labeled edge (t, u, EQ) to the formula f(t, u) ∧ f(u, t), each edge (t, u, GT) to the formula
f(t, u)∧¬f(u, t), and finally joins the formulas for the graph via a conjunction. The resulting
constraint is defined to be the disjunction of the formulas generated from all such graphs.

Having defined the lifting of recursive path quasi-orderings to the language of constraints,
we define our ordering constraint algebra A(T ,Γ) as the tuple 〈CF ,>, refine, γ, sat〉 where:

refine(c, t, u) = c ∧ rpo(t, u),
Γ is the set of all RPQOs,
γ(c) is the set of RPQOs derived from the underlying quasi-orders <F that satisfy c, and
sat(c) = true if and only if there exists a quasi-order <F satisfying c.

That A(T ,Γ) is an OCA, i.e., satisfies the requirements of Def. 14, follows by construction.
Namely, the function rpo(t, u) produces constraints c such that, for any RPQO <rpo, t <rpo u

if and only if its underlying ordering <F satisfies c.
Having shown that using RPQOs as a term ordering is useful for theorem proving, satisfies

the necessary properties for REST, and admits an efficient ordering constraint algebra, we
continue our formal work by stating and proving the metaproperties of REST.

ECOOP 2022

13:16 REST: Integrating Term Rewriting with Program Verification

5 REST Metaproperties: Soundness, Completeness, and Termination

We now present the correctness, completeness, and termination of the REST algorithm defined
in Figure 3. Here we only state the formal results; the detailed proofs can be found in [26].
Our formalism of rewriting is standard; based on that of Klop [30] (details in our extended
version [26]). For a set of rewrite rules R, we v →R w iff v →r w for some r ∈ R. For oracle
functions (from terms to sets of terms) E , we write t→E t′ iff t′ ∈ E(t). We write t→R+E t

′

if t→R t′ or t→E t′. For a relation → we write →∗ for its reflexive, transitive closure. A
path t1, . . . , tn is an indexed list of terms. A binary relation < orients a path t1, . . . , tn if
∀i, 1 ≤ i < n, ti < ti+1.
Soundness of REST means that any term of the output (u ∈ REST(A, R, t0, E)) can be derived
from the original input term by some combination of term rewriting steps from R and steps
via the oracle function E (in other words, t0 →∗R+E u).

I Theorem 17 (Soundness). For all R, u, and t0, if u ∈ REST(A, R, t0, E), then t0 →∗R+E u.

Completeness of REST would naïvely be that, for any terms t0 and u, if t0 →∗R+E u then
u is in our output (u ∈ REST(A, R, t0, E)). This result doesn’t hold by design, since REST

explores only paths permitted by at least one instance of its input term ordering family.
We prove this relative completeness result in two stages. First (Theorem 18), we show that
completeness always holds if all steps only involve the external oracle. Second (Theorem 19),
we prove relative completeness of REST with respect to the provided term ordering family.

I Theorem 18 (Completeness w.r.t. E). For all R, u, t0, if t0 →∗E u, then u ∈ REST(A, R, t0, E).

I Theorem 19 (Relative Completeness). For all R, u, and t0, if t0 →∗R+E u and there exists
an ordering < ∈ γ(>) that orients the path justifying t0 →∗R+E u, then u ∈ REST(A, R, t0, E).

Termination of REST requires conditions on the external oracle E and the ordering constraint
algebra A. Next, we formally define these requirements and state termination of REST.

I Definition 20 (Well-Founded A). For ordering constraint algebras A = 〈C,>, refine, sat, γ〉,
for c, c′ ∈ C, we say c′ strictly refines c (denoted c′ @A c) if c′ = refine(c, t, u) for some
terms t and u, and γ(c′) ⊂ γ(c). Then, we say A is well-founded if @A is.

Down every path explored by REST, the tracked constraint is only ever refined; well-foundedness
of A guarantees that finitely many such refinements can be strict.

We note that if the OCA describes a finite set of orderings, then it is trivially well-founded:
⊂ is well-founded on finite sets. For example, the ordering constraint algebra for RPQOs
(Sec. 4.2.1) is well-founded when the set of functions symbols F is finite, as there are a only
a finite number of possible RPQOs over a finite set of function symbols.

I Definition 21 (Normalizing & Bounded E). A relation tl → tr is normalizing if it does not
admit an infinite path and bounded if for each tl it only admits finite tr.

Note that any deterministic, terminating external oracle is both normalizing and bounded.

I Theorem 22 (Termination). For any finite set of rewriting rules R, if: 1)→E is normalizing
and bounded, 2) A is well-founded, and 3) the refine and sat functions of A are decidable
(implemented to always-terminate), then, for all terms t0, REST(A, R, t0, E) terminates.

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:17

{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) → { f ((s0

\/ s1) /\ s0) = f s0 } @-}

example1 :: Set → Set → (Set → a) → Unit

example1 s0 s1 f =

f ((s0 \/ s1) /\ s0) ? distribUnion s0 s1 s0

=== f ((s0 /\ s0) \/ (s1 /\ s0)) ? idemInter s0

=== f (s0 \/ (s1 /\ s0)) ? symmInter s1 s0

=== f (s0 \/ (s0 /\ s1)) -- Disjoint

=== f (s0 \/ emptySet) ? emptyUnion s0

=== f s0

*** QED

Figure 5 Liquid Haskell version of the proof from Example 1.

6 Implementation of REST

We implemented REST as a standalone library, of 2337 lines of Haskell code (Sec. 6.1) and we
integrated this library into Liquid Haskell [51] (Sec. 6.2) to automate lemma applications.

6.1 The REST Library
Our REST library is available on Hackage [25] and can be used directly by other Haskell
projects. The library is designed modularly; for example, a client of the library can decide to
use REST only for comparing terms via an OCA, without also using the proof search algorithm
of Sec. 3.2. In addition, our library has a small code footprint and can be used with or
without external solvers, making it ideal for integration into existing program analysis tools.

Furthermore, we include in the library built-in helper utilities for encoding and solving
constraints on term orderings. Although the library enables integration of arbitrary solvers; it
provides several built-in solvers for constraints on finite WQOs and also provides an interface
for solving constraints with external SMT solvers. These utilities comprise the majority of
the code in the REST library (1369 out of the 2337 lines).

Our implementation defines the OCA interface of Sec. 4.2 and provides three built-in
instances for RPQOs, LPQOs (derived from the Lexicographic path ordering), and KBQOs
(Sec. 4.1.1). The helper utilities included in the library enable a concise implementation of
these OCAs: the three OCA implementations consist of 200 lines of code in total.

To facilitate debugging and evaluation of OCAs, the library also provides an executable
that visualizes the rewrite paths that REST explores when using the OCA to compute the
rewrite paths from a given term. For example, Figure 4 was produced using this functionality.

6.2 Integration of REST in Liquid Haskell
We used REST to automate lemma application in Liquid Haskell. Here we start with a brief
overview of Liquid Haskell (Sec. 6.2.1), then present how REST is used to automate lemma
instantiations (Sec. 6.2.2) and how it interacts with Liquid Haskell’s automation (Sec. 6.2.3).

6.2.1 Liquid Haskell and Program Lemmas
Liquid Haskell performs program verification via refinement types for Haskell; function types
can be annotated with refinements that capture logical/value constraints about the function’s
parameters, return value and their relation. For example, the function example1 in Figure 5
ports the set example of Example 1 to Liquid Haskell, without any use of REST. User-defined

ECOOP 2022

13:18 REST: Integrating Term Rewriting with Program Verification

lemmas amount to nothing more than additional program functions, whose refinement types
express the logical requirements of the lemma. The first line of the figure is special comment
syntax used in Liquid Haskell to introduce refinement types; it expresses that the first
parameter s0 is unconstrained, while the second s1 is refined in terms of s0: it must be some
value such that IsDisjoint s0 s1 holds. The refinement type on the (unit) return value
expresses the proof goal; the body of the function provides the proof of this lemma. The
proof is written in equational style; the ? annotations specify lemmas used to justify proof
steps [50]. The penultimate step requires no lemma; the verifier can discharge it based on
the refinement on the s1 parameter.

6.2.2 REST for Automatic Lemma Application in Liquid Haskell
We apply REST to automate the application of equality lemmas in the context of Liquid
Haskell. The basic idea is to extract a set of rewrite rules from a set of refinement-typed
functions, each of which must have a refinement type signature of the following shape:
{-@ rrule :: x1:t1 → . . . → xn:tn → {v:() | el = er } @-}

In particular, the equality el = er refinement of the (unit) return value generates potential
rewrite rules to feed to REST, in both directions. Let FV (e) be the free variables of e,
if FV (er) ⊆ FV (el) and el 6∈ {x1, . . . , xn} then el → er is generated as a rewrite rule.
Symmetrically, if FV (el) ⊆ FV (er) and er 6∈ {x1, . . . , xn} then er → el is generated as a
rewrite rule. These rewrite rules are fed to REST along with the current terms we are trying
to equate in the proof goal; any rewrites performed by REST are fed back to the context of
the verifier as assumed equalities.

REST is using Liquid Haskell to ensure that the rewrite rules are correct. The body of
rrule provides an proof (machine-checked by Liquid Haskell) that the equality el = er holds.
Such proofs can themselves use REST’s rewrites, but mutual dependencies are not permitted,
e.g., if rrule1 is proved using rrule2, then rrule2’s proof cannot use rrule1.

Selective Activation of Lemmas: Local and Global Rewrite Rules In our Liquid Haskell
extension, the user can activate a rewrite rule globally or locally, using the rewrite and
rewriteWith pragmas, resp.. For example, with the below annotations

{-@ rewrite global @-} {-@ rewriteWith theorem [local] @-}

the rule global will be active when verifying every function in the current Haskell module,
while the rule local is used only when verifying theorem.

Lemma Automation Using our implementation, the same Example 1 proven manually in
Figure 5 can be alternatively proven (with all relevant rewrite rules in scope) as follows:
{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a)

→ { f ((s0 \/ s1) /\ s0) = f s0 } @-}

example1 s0 s1 _ = ()

The proof is fully automatic: all required lemmas are handled by REST. Integrating REST into
Liquid Haskell required around 500 lines of code, mainly for surface syntax.

6.2.3 Mutual PLE and REST Interaction
Liquid Haskell includes the Proof by Logical Evaluation (PLE) [52] tactic that automatically
expands terminating functions. PLE expands function calls into single cases of their (possibly
conditional) bodies exactly when the SMT can prove that a unique case definitely applies.

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:19

Property LH+ Coq Agda Lean Isabelle Zeno Isa+

Diverge X0.62s loop loop fail loop X0.47s X7.58s
Plus AC X1.13s loop loop fail fail X0.54s X4.30s
Congruence X0.69s X0.22s X26.10s X0.36s X3.86s fail X4.39s

Table 1 Comparison of REST with existing theorem provers. LH+ is Liquid Haskell with rewriting.
The potential outcomes are X, followed by the runtime, when the property is proved; loop when no
answer is returned after 300 sec; and fail when the property cannot be proven. Isa+ is Isabelle/HOL

with Sledgehammer.

In our implementation, PLE plays the role of its external oracle (cf. Sec. 3). Since PLE is
proven terminating [52], the termination of this collaboration is also guaranteed (cf. Sec. 5).

PLE takes as input a set F of (provably) terminating, user-defined function definitions
that it iteratively evaluates. Meanwhile, REST is provided with the rewrite rules extracted
from in-scope lemmas in the program (cf. Sec. 6.2.2); these two techniques can then generate
paths of equal terms including steps justified by each technique. For example, consider the
following simple lemma countPosExtra, stating that the number of strictly positive values in
xs ++ [y] is the number in xs, provided that y <= 0, and a lemma stating that countPos of
two lists appended gives the same result if their orders are swapped.

{-@ lm :: xs : [Int] → ys : [Int] → { countPos (xs ++ ys) = countPos (ys ++ xs) } @-}

{-@ rewriteWith countPosExtra [lm] @-}

{-@ countPosExtra :: xs : [Int] → {y : Int | y <= 0 } →
{ countPos (xs ++ [y]) = countPos xs } @-}

countPosExtra :: [Int] → Int → ()

countPosExtra _ _ = () -- proof is fully automatic!

The proof requires rewriting countPos(xs ++ [y]) first via lemma lm (by REST), expanding
the definition of ++ twice (via PLE) to give countPos(y:xs), and finally one more PLE step
evaluating countPos, using the logical fact that y is not positive. Note that the first step
requires applying an external lemma (out of scope for PLE) and the last requires SMT
reasoning not expressible by term rewriting. The two techniques together allow for a fully
automatic proof.

7 Evaluation

Our evaluation seeks to answer three research questions:
§ 7.1: How does REST compare to existing rewriting tactics?
§ 7.2: How does REST compare to E-matching based axiomatization?
§ 7.3: Does REST simplify equational proofs?

We evaluate REST using the Liquid Haskell implementation described in Sec. 6. In Sec. 7.1,
we compare our implementation’s rewriting functionality with that of other theorem provers,
with respect to the challenges mentioned in Sec. 2. In Sec. 7.2, we compare against Dafny [35]
by porting Dafny’s calculational proofs to Liquid Haskell. Finally, in Sec. 7.3, we port proofs
from various sources into Liquid Haskell both with and without rewriting, and compare the
performance and complexity of the resulting proofs.

ECOOP 2022

13:20 REST: Integrating Term Rewriting with Program Verification

7.1 Comparison with Other Theorem Provers

To compare REST with the rewriting functionality of other theorem provers, we developed three
examples to test the five challenges described in Sec. 2 and compare our implementation to that
of other solvers. We chose to evaluate against Agda [41], Coq [11], Lean [5], Isabelle/HOL [40],
and Zeno [46], as they are widely known theorem provers that either support a rewrite
tactic, or use rewriting internally. Agda, Lean, and Isabelle/HOL allow user-defined rewrites.
In Lean and Isabelle/HOL, the tactic for applying rewrite rules multiple times is called
simp; for simplification. Agda, Coq, and Isabelle/HOL’s implementation of rewriting can
diverge for nonterminating rewrite systems [11, 1, 40]. On the other hand, Lean enforces
termination, at least to some degree, by ensuring that associative and commutative operators
can only be applied according to a well-founded ordering [4]. Zeno [46] does not allow for
user-defined rewrite rules, rather it generates rewrites internally based on user-provided
axioms. Sledgehammer [38, 44, 43] is a powerful tactic supported by Isabelle/HOL that (on
top of the built-in rewriting) dispatches proof obligations to various external provers and
succeeds when any of the external provers succeed; this tactic operates under a built-in
(customizable) timeout.

1. Diverge tests how the prover handles the challenges 1 and 5: restricting the rewrite
system to ensure termination and integrating external oracle steps. This example encodes a
single (terminating) rewrite rule f(X) → g(s(s(X))) and terminating, mutually recursive
definitions for f and g. However, the combination of the rules and function expansions can
cause divergence. The proof follows directly from the function definitions.

2. Plus AC tests the challenges 2 and 3 by encoding a task that requires a permissive term
ordering. This example encodes p, q, and r, user-defined natural numbers, and requires that
expressions such as (p + q) + r can be rewritten into different groupings such as (r + q) + p,
via associativity and commutativity rules.

3. Congruence is an additional test to ensure that the implementation of the rewrite
system is permissive enough to generate the expected result. This test evaluates a basic
expected property, that the expressions f(g(t)) and f(g′(t)) can be proved equal if there
exists a rewrite rule of the form g(X)→ g′(X).

We present our results in Table 1. As expected, Coq, Agda, and Isabelle/HOL diverge on
the first example, as they do not ensure termination of rewriting. Lean does not diverge, but
it also fails to prove the theorem. Unsurprisingly, the commutativity axiom of Plus AC causes
theorem provers that don’t ensure termination of rewriting to loop. Although Lean ensures
termination, it does not generate the necessary rewrite application in every case, because
it orients associative-commutative rewriting applications according to a fixed order. With
the exception of Zeno, all of the theorem provers tested were able to prove the necessary
theorem for the final example. Our implementation succeeds on these three examples by
implementing a permissive termination check based on non-strict orderings.

The only two tools that proved all three examples are our implementation and Isabelle’s
Sledgehammer. The latter combines many techniques which go beyond term rewriting.
Nonetheless, our novel approach provides a clear and general formal basis for incorporation
with a wide variety of verifiers and reasoning techniques (due to its generic definition and
formal requirements) and comes with strong formal guarantees for such combinations. In
particular, REST guarantees termination and relative completeness, which Sledgehammer (via
its timeout mechanism) does not.

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:21

7.2 Comparison with E-matching
To evaluate REST against the E-matching based approach, we compared with Dafny [35],
a state-of-the-art program verifier. Dafny supports equational reasoning via calculational
proofs [36] and calculation with user-defined functions [2]. We ported the calculational proofs
of [36] to Liquid Haskell, using rewriting to automatically instantiate the necessary axioms.

7.2.1 List Involution
Figure 6 shows an example taken directly from Dafny [36], proving that the reverse operation
on lists is an involution, i.e., ∀xs.reverse(reverse(xs)) = xs. In this example, both Liquid
Haskell and Dafny operate on inductively defined lists with user-defined functions ++
and reverse. The original Dafny proof goes through via the combination of a manual
application of a lemma called ReverseAppendDistrib (stating that for all lists xs and ys,
reverse(xs++ ys) = reverse(ys) ++ reverse(xs)) and induction on the size of the list.

Using REST’s term rewriting, Liquid Haskell is able to simplify the proof, with PLE
expanding the function definitions for reverse and append, and REST applying the necessary
equality reverse (reverse xs ++ [x]) = reverse [x] ++ reverse (reverse xs).

In Dafny, a similar simplification of the calculational proof is not possible; the proof
fails if the manual equality steps are simply removed. We experimented further and found
that the lemma ReverseAppendDistrib can be alternatively encoded as a user-defined axiom
which, by itself, does not appear to cause trouble for E-matching, and with this change
alone the proof succeeds without the need for this single lemma call. On the other hand, the
equalities must still be mentioned for the calculational proof to succeed. Perhaps surprisingly,
removing these intermediate equality steps caused Dafny to stall4; analysis with the Axiom
Profiler [7] indicated the presence of a (rather complex) matching loop involving the axiom
ReverseAppendDistrib in combination with axioms internally generated by the verifier itself.
This illustrates that achieving further automation of such E-matching-based proofs is not
straightforward, and can easily lead to performance difficulties due to matching loops which
can be hard to predict and understand, even in this state-of-the-art verifier. By contrast,
REST can automatically provide the necessary equality steps without risking divergence.

7.2.2 Set Properties
Figure 7 shows the Dafny and Liquid Haskell proofs for the implication s0∩s1 = ∅ =⇒ f((s0∪
s1) ∩ s0) = f(s0). Dafny uses a calculational proof to show the equality (s0 ∪ s1) ∩ s0 = s0,
seemingly by applying distributivity. In fact, the distributivity aspect is not relevant to
the proof; rather, the set equality in the proof syntax causes Dafny to instantiate the set
extensionality axiom discharging the proof. It is for this reason that Dafny requires an extra
proof step to prove f((s0 ∪ s1) ∩ s0) = f(s0), as this term does not include an equality
on sets, but rather on applications of f . Dafny’s set axiomatization does not include the
distributivity axiom, as such an axiom could easily lead to matching loops.

REST’s termination property allows arbitrary lemmas to be encoded as rewrite rules; in
this case rewriting with the distributivity lemma can complete the proof.

In conclusion, we have shown that REST’s rewriting can be used as an alternative to
E-matching based axiomatization. Furthermore, the termination guarantee of REST enables
axioms that may give rise to matching loops to, instead, be encoded as rewrite rules.

4 We include this version in the Appendix of our extended paper [26]

ECOOP 2022

13:22 REST: Integrating Term Rewriting with Program Verification

lemma LemmaReverseTwice(xs: List)

ensures reverse(reverse(xs)) == xs;

{

match xs {

case Nil =>

case Cons(x, xrest) =>

calc {

reverse(reverse(xs));

reverse(append(reverse(xrest), Cons(x, Nil)));

{ ReverseAppendDistrib(reverse(xrest), Cons(x, Nil)); }

append(reverse(Cons(x, Nil)), reverse(reverse(xrest)));

{ LemmaReverseTwice(xrest); }

append(reverse(Cons(x, Nil)), xrest);

append(Cons(x, Nil), xrest);

xs;

}

}

}

(a) Calculation-style proof in Dafny, from [36].

{-@ involutionP :: xs:[a] → {reverse (reverse xs) == xs } @-}

{-@ rewriteWith involutionP [distributivityP] @-}

involutionP [] = ()

involutionP (x:xs) = involutionP xs

(b) An equivalent proof implemented in Liquid Haskell extended with REST.

Figure 6 List Involution proofs in Liquid Haskell and Dafny.

7.3 Simplification of Equational Proofs
Finally, we evaluate how REST can simplify equational proofs. We chose to include the set
example from [36] (described in Sec. 7.2.2), data structure proofs from [50], examples from
the Liquid Haskell test suite, as well as our own case study. We developed each example
in Liquid Haskell both with and without rewriting, and compared the timing and proof
complexity. Each proof using rewriting was evaluated using each different ordering constraint
algebras built-in to our Haskell REST library. The proofs in [50] were selected because they
require induction, expansion of user-defined functions, and equational reasoning steps to
prove properties about trees and lists. The examples from the Liquid Haskell test suite were
taken to evaluate the rewriting across a range of representative proofs.

Our DSL case study evaluates the performance of our implementation using a larger set
of rewrite rules, by verifying optimizations for a simple programming language, containing
statements (i.e., print, sequence, branches, repeats and no-ops) and expressions (i.e., constants,
variables, arithmetic and boolean expressions) using 23 rewrite rules. Our rewriting technique
can prove the kind of equivalences used in techniques such as supercompilation [8, 54, 48],
by encoding the basic equality axioms as rewrite rules and using them to prove more
complicated theorems. A full list of the axioms and proved theorems are available in our
extended version [26]. We note that we encoded arithmetic operations as uninterpreted SMT
functions, so that the built-in arithmetic theory of the SMT does not aid proof automation.

We present our results in Table 2. By using rewriting, we were able to eliminate all but
two of the non-inductive axiom instantiations, while maintaining a reasonable verification
time. As expected, no ordering constraint algebra was able to complete all the proofs using

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:23

lemma Proof<a>(s0: set<int>, s1: set<int>, f: set<int> → a)

requires s0 * s1 == {}

ensures f((s0 + s1) * s0) == f(s0) {

calc {

(s0 + s1) * s0; (s0 * s0) + (s1 * s0);

s0;

}

}

(a) Proof in Dafny using built-in set axiomatization.

{-@ assume unionEmpty :: ma : Set → {v : () | ma \/ emptySet = ma } @-}

{-@ assume intersectComm :: ma : Set → mb : Set → {v : () | ma /\ mb = mb /\ ma } @-}

{-@ assume intersectSelf :: s0 : Set → { s0 /\ s0 = s0 } @-}

{-@ assume unionIntersect :: s0 : Set → s1 : Set → s2 : Set

→ { (s0 \/ s1) /\ s2 = (s0 /\ s2) \/ (s1 /\ s2) } @-}

{-@ rwDisjoint :: s0 : Set → {s1 : Set | IsDisjoint s0 s1} → { s0 /\ s1 = emptySet } @-}

{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) →
{ f ((s0 \/ s1) /\ s0) = f s0 } @-}

example1 s0 s1 _ = ()

(b) An equivalent proof implemented in Liquid Haskell, with a user-defined axiomatization of sets.

Figure 7 Set Proofs in Liquid Haskell and Dafny.

rewriting; however, each proof could be verified with at least one of them.
The test cases LH-FingerTree and LH-MapReduce required manual axiom instantiations be-

cause the structure of the term did not match the rewrite rule for the axiom. LH-MapReduce,
requires proving the identity op (f (take n is)) (mapReduce n f op (drop n is)) = f is.
An inductive lemma application generates the background equality mapReduce n f op (drop

n is) = f (drop n is), and a rewrite matching the term op (f (take n is)) (f (drop n

is)) must be instantiated to complete the proof. However, since the background equality
is neither a rewrite rule nor an evaluation step, the necessary term op (f (take n is)) (f

(drop n is)) never appears. Therefore, it is necessary to manually instantiate the lemma.
As future work, a limited form of E-matching [12] could address this issue in the general case.

In conclusion, we’ve shown that extending Liquid Haskell to use REST enables rewriting
functionality not subsumed by existing theorem provers, that REST is effective for axiom
instantiation, and that REST can simplify equational proofs.

8 Related Work

Theorem Provers & Rewriting Term rewriting is an effective technique to automate
theorem proving [27] supported by most standard theorem provers. § 7.1 compares, by
examples, our technique with Coq, Agda, Lean, and Isabelle/HOL. In short, our approach is
different because it uses user-specified rewrite rules to derive, in a terminating way, equalities
that strengthen the SMT-decidable verification conditions required for program verification.

SMT Verification & Rewriting Our rewrite rules could be encoded in SMT solvers as
universally quantified equations and instantiated using E-matching [12], i.e., a common
algorithm for quantifier instantiation. Without careful choice of user-specified triggers,
E-matching can lead to hard-to-predict an unstable performance, including non-termination

ECOOP 2022

13:24 REST: Integrating Term Rewriting with Program Verification

Name Orig. Cut Rules Time
Orig. RPQO LPQO KBQO Fuel

Set-Dafny 4 4 5 1.11s X1.15s X1.19s 71.13s X1.22s
Set-Mono 7 7 4 1.16s 71.40s 71.41s X1.47s X1.60s
List 3 3 3 2.46s X3.17s 74.21s 72.24s X3.54s
Tree 3 3 3 1.61s X2.64s X3.40s X3.08s X3.12s
DSL 43 43 23 2.89s X5.46s 73.85s 74.19s X6.54s
LH-FingerTree 2 1 1 5.55s X5.60s X5.57s X5.64s X5.95s
LH-T1013 1 1 1 1.11s X1.06s X1.00s X1.02s X1.06s
LH-T1025 2 2 2 1.03s X1.05s X1.08s X1.07s X1.13s
LH-T1548 1 1 1 1.45s X1.33s X1.38s X1.32s X1.45s
LH-T1660 1 1 1 1.09s X1.12s X1.12s X1.12s X1.20s
LH-MapReduce 4 3 2 14.38s X29.50s X518.91s X28.49s 7Timeout
Table 2 Results from simplification of proofs with rewriting. Set-Dafny is the set example

from[36], Set-Mono describes a similar property. List and Tree are equational proofs from [50].
DSL is the program equivalence case study. The remaining proofs are from the Liquid Haskell test
suite folder tests/pos, excluding those using only inductive or mutually inductive lemmas. Orig. is
the number of non-inductive lemma applications in the original proof. Cut is the number of lemma
applications that were removed by rewriting; where Cut is the same as Orig., all non-inductive
lemma applications have been removed. Rules is the number of axioms encoded as rewrite rules.
Time (Orig.) is verification time in seconds for the original proof. LPQO and KBQO are OCAs
derived from the Lexicographic Path Ordering and Knuth-Bendix ordering respectively, and Fuel is
an OCA allowing up to 5 rewrite applications per proof goal.

due to axioms generating new instantiations indefinitely in a matching loop. [34] refers to
this unpredictable behavior of E-matching as the “the butterfly effect” and partially addresses
it by detecting formulas that could give rise to simple matching loops. However, as we show
in Sec. 7.2.1, guaranteeing termination in general remains subtle, fundamentally due to the
fact that every equality generates a (potentially-infinite) equivalence class of terms available
in the solver’s search. Our approach circumvents unpredictability by using the terminating
REST algorithm to instantiate the rewrite rules outside of the SMT solver.

Z3 [13] and CVC4 [6] are state-of-the-art SMT solvers; both support theory-specific rewrite
rules internally. Recent work [42] enables user-provided rewrite rules to be added to CVC4.
However, using the SMT solver as a rewrite engine offers little control over rewrite rule
instantiation, which is necessary for ensuring termination.

Rewriting in Haskell Haskell itself has used various notions of rewriting for program
verification. GHC supports the RULES pragma with which the user can specify unchecked,
quantified expression equalities that are used at compile time for program optimization. [10]
proposes Inspection Testing as a way to check such rewrite rules using runtime execution and
metaprogramming, while [22] prove rewrite rules via metaprogramming and user-provided
hints. In a work closely related to ours, Zeno [46] is using rewriting, induction, and further
heuristics to provide lemma discovery and fully automatic proof generation of inductive
properties. Unlike our approach, Zeno’s syntax is restricted (e.g., it does not allow for
existentials) and it does not allow for user-provided hints when automation fails. HALO [53]
enables Haskell verification by converting Haskell into logic and using an SMT solver to
verify user-defined formulas. However, this approach relies on SMT quantifiers to encode
user functions, thus the solver can diverge and verification becomes unpredictable.

Termination of Rewriting and Runtime Termination Checking Early work on proving
termination of rewriting using simplification orderings is described in [15]. More recent work

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:25

involves dependency pairs [3] and applying the size-change termination principle [33] in the
context of rewriting [49]. Tools like AProVE [24] and NaTT [56] can statically prove the
termination of rewriting. In contrast, REST is not focused on statically proving termination
of rewriting; rather it uses a well-founded ordering to ensure termination at runtime. This
approach enables integration of arbitrary external oracles to produce rewrite applications, as a
static analysis is not possible in principle. Furthermore, our approach enables nonterminating
rewriting systems to be useful: REST will still apply certain rewrite rules to satisfy a proof
obligation, even if the rewrite rules themselves cannot be statically shown to terminate.

We used a well-quasi-ordering [32] because it enables rewriting to terms that are not strictly
decreasing in a simplification ordering. WQOs are commonly used in online termination
checking [37], especially for program optimization techniques such as supercompilation [9].

Equality Saturation In our implementation, REST passes equalities to the SMT environment,
ultimately used for equality saturation via an E-graph data structure [20]. Equality satura-
tion has also been used for supercompilation[48]. REST does not currently exploit equality
saturation (unless indirectly via its oracle). However, as future work we might explore local
usage of efficient E-graph implementations. (e.g., [55]) for caching the equivalence classes
generated via rewrite applications.

Associative-Commutative Rewriting Traditionally, enforcing a strict ordering on terms
prevents the application of rewrite rules for associativity or commutativity (AC); this problem
motivates REST’s use of well-quasi orders. However, another solution is to omit the rules and
instead perform the substitution step of rewriting modulo AC. Termination of the resulting
system can be proved using an AC ordering [17]; the requirement is that the ordering respects
AC: for all terms t′ AC-equivalent to t and u′ AC-equivalent to u, t > u implies t′ > u′.

REST’s use of well-quasi-orderings enables AC axioms to be encoded as rewrite rules,
guaranteeing completeness if the AC-equivalence class of a term is a subset of the equivalence
class induced by the ordering. This is a significant practical benefit as it does not require
REST to identify AC symbols and treat them differently for unification.

However, treating AC axioms as rewrite rules can lead to an explosion in the number of
terms obtained via rewriting. As future work, it could be possible to extend REST to support
AC rewriting and unification in order to reduce the number of explicitly instantiated terms.

9 Conclusion

We presented REST, a novel approach to rewriting that uses an online termination check that
simultaneously considers entire families of term orderings via Ordering Constraint Algebras.
We defined our algebra on well-quasi orderings that are more permissive than standard
simplification orderings and demonstrated how to derive well-quasi orderings from well-
known simplification orderings. We proved correctness, relative completeness, and (online)
termination of REST and implemented it as a small Haskell library suitable for integration
with existing verification tools. To evaluate REST we integrated our implementation with
Liquid Haskell and showed that the resulting system compares well with existing rewriting
techniques and can substantially simplify equational proofs.

Acknowledgements. We thank Jonathan Chan, Eric Conlon, Rui Ge, Paulette Koronke-
vich and the anonymous reviewers for their helpful and constructive feedback. This work
was supported by the Juan de la Cierva grants IJC2019-041599-I, the HaCrypt ONR project
N00014-19-1-2292, and the ERC starting grant CRETE (101039196). We acknowledge the
support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

ECOOP 2022

13:26 REST: Integrating Term Rewriting with Program Verification

References
1 Agda Developers. The Agda Language Reference, version 2.6.1, 2020. Available electronically

at https://agda.readthedocs.io/en/v2.6.1/language/index.html.
2 Nada Amin, K Rustan M Leino, and Tiark Rompf. Computing with an smt solver. In

International Conference on Tests and Proofs, pages 20–35. Springer, 2014.
3 Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs.

Theoretical Computer Science, 236(1):133–178, April 2000. URL: http://www.sciencedirect.
com/science/article/pii/S0304397599002078, doi:10.1016/S0304-3975(99)00207-8.

4 Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem Proving in Lean, Release
3.20.0, September 2020. p 73. URL: https://leanprover.github.io/theorem_proving_in_lean/
theorem_proving_in_lean.pdf.

5 Jeremy Avigad, Gabriel Ebner, and Sebastian Ullrich. The Lean Reference Manual, Release
3.3.0, 2018. URL: https://leanprover.github.io/reference/lean_reference.pdf.

6 Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi’c,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Proceedings of the 23rd International Conference on Computer Aided
Verification (CAV ’11), volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, July 2011. Snowbird, Utah. URL: http://www.cs.stanford.edu/~barrett/pubs/BCD+
11.pdf.

7 N. Becker, P. Müller, and A. J. Summers. The axiom profiler: Understanding and debugging
smt quantifier instantiations. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS) 2019, LNCS, pages 99–116. Springer-Verlag, 2019.

8 Maximilian Bolingbroke and Simon Peyton Jones. Supercompilation by evaluation. SIGPLAN
Not., 45(11):135–146, September 2010. doi:10.1145/2088456.1863540.

9 Maximilian Bolingbroke, Simon Peyton Jones, and Dimitrios Vytiniotis. Termination combi-
nators forever. In Proceedings of the 4th ACM symposium on Haskell, pages 23–34, 2011.

10 Joachim Breitner. A promise checked is a promise kept: inspection testing. In Nicolas
Wu, editor, Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell,
Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17, 2018, pages 14–25. ACM, 2018.
doi:10.1145/3242744.3242748.

11 The Coq Development Team. The Coq Reference Manual, version 8.11.2, 2020. Available
electronically at http://coq.inria.fr/refman.

12 Leonardo de Moura and Nikolaj Bjørner. Efficient e-matching for smt solvers. In Frank
Pfenning, editor, Automated Deduction – CADE-21, pages 183–198, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

13 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

14 Nachum Dershowitz. A note on simplification orderings. Information Processing Letters,
9(5):212–215, 1979. doi:https://doi.org/10.1016/0020-0190(79)90071-1.

15 Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical computer science,
17(3):279–301, 1982.

16 Nachum Dershowitz. Termination of rewriting. Journal of symbolic computation, 3(1-2):69–115,
1987.

17 Nachum Dershowitz, Jieh Hsiang, N Alan Josephson, and David A Plaisted. Associative-
commutative rewriting. In IJCAI, pages 940–944, 1983.

18 Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. In Her-
mann A. Maurer, editor, Automata, Languages and Programming, Lecture Notes in Computer
Science, pages 188–202, Berlin, Heidelberg, 1979. Springer. doi:10.1007/3-540-09510-1_15.

19 David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. J. ACM, 52(3):365–473, May 2005. URL: http://doi.acm.org/10.1145/1066100.

1066102, doi:10.1145/1066100.1066102.

https://agda.readthedocs.io/en/v2.6.1/language/index.html
http://www.sciencedirect.com/science/article/pii/S0304397599002078
http://www.sciencedirect.com/science/article/pii/S0304397599002078
https://doi.org/10.1016/S0304-3975(99)00207-8
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/reference/lean_reference.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://doi.org/10.1145/2088456.1863540
https://doi.org/10.1145/3242744.3242748
http://coq.inria.fr/refman
https://doi.org/https://doi.org/10.1016/0020-0190(79)90071-1
https://doi.org/10.1007/3-540-09510-1_15
http://doi.acm.org/10.1145/1066100.1066102
http://doi.acm.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:27

20 David Detlefs, Greg Nelson, and James B Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM (JACM), 52(3):365–473, 2005.

21 Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Adding decision
procedures to smt solvers using axioms with triggers. Journal of Automated Reasoning,
56(4):387–457, 2016.

22 Andrew Farmer, Neil Sculthorpe, and Andy Gill. Reasoning with the hermit: Tool support
for equational reasoning on ghc core programs. In Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell, Haskell ’15, page 23–34, New York, NY, USA, 2015. Association for
Computing Machinery. doi:10.1145/2804302.2804303.

23 Jean-Christophe Filliâtre and Andrei Paskevich. Why3—where programs meet provers. In
Matthias Felleisen and Philippa Gardner, editors, Programming Languages and Systems
(ESOP), volume 7792 of Lecture Notes in Computer Science, pages 125–128. Springer, 2013.

24 Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, et al. Ana-
lyzing program termination and complexity automatically with aprove. Journal of Automated
Reasoning, 58(1):3–31, 2017.

25 Zachary Grannan. rest-rewrite: Rewriting library with online termination checking, 2022.
URL: https://hackage.haskell.org/package/rest-rewrite.

26 Zachary Grannan, Niki Vazou, Eva Darulova, and Alexander J. Summers. Rest: Integrating
term rewriting with program verification (extended version), 2022. arXiv:2202.05872.

27 Jieh Hsiang, Hélène Kirchner, Pierre Lescanne, and Michaël Rusinowitch. The term rewriting
approach to automated theorem proving. The Journal of Logic Programming, 14(1):71–99,
October 1992. URL: http://www.sciencedirect.com/science/article/pii/0743106692900477,
doi:10.1016/0743-1066(92)90047-7.

28 Gerard Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science,
SFCS ’77, page 30–45, USA, 1977. IEEE Computer Society. doi:10.1109/SFCS.1977.9.

29 OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2022. A000798:
Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.
URL: https://oeis.org/A000798.

30 J. W. Klop. Term Rewriting Systems, page 1–116. Oxford University Press, Inc., USA, 1993.
31 Donald E Knuth and Peter B Bendix. Simple word problems in universal algebras. In

Automation of Reasoning, pages 342–376. Springer, 1983.
32 Joseph B Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.

Journal of Combinatorial Theory, Series A, 13(3):297–305, November 1972. URL: http:

//www.sciencedirect.com/science/article/pii/0097316572900635, doi:10.1016/0097-3165(72)
90063-5.

33 Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for
program termination. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’01, page 81–92, New York, NY, USA, 2001.
Association for Computing Machinery. doi:10.1145/360204.360210.

34 K. R. M. Leino and Clément Pit-Claudel. Trigger Selection Strategies to Stabilize Program
Verifiers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification,
Lecture Notes in Computer Science, pages 361–381, Cham, 2016. Springer International
Publishing. doi:10.1007/978-3-319-41528-4_20.

35 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Proceedings of the 16th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR’10, page 348–370, Berlin, Heidelberg, 2010. Springer-
Verlag.

36 K Rustan M Leino and Nadia Polikarpova. Verified calculations. In Working Conference on
Verified Software: Theories, Tools, and Experiments, pages 170–190. Springer, 2013.

ECOOP 2022

https://doi.org/10.1145/2804302.2804303
https://hackage.haskell.org/package/rest-rewrite
http://arxiv.org/abs/2202.05872
http://www.sciencedirect.com/science/article/pii/0743106692900477
https://doi.org/10.1016/0743-1066(92)90047-7
https://doi.org/10.1109/SFCS.1977.9
https://oeis.org/A000798
http://www.sciencedirect.com/science/article/pii/0097316572900635
http://www.sciencedirect.com/science/article/pii/0097316572900635
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1145/360204.360210
https://doi.org/10.1007/978-3-319-41528-4_20

13:28 REST: Integrating Term Rewriting with Program Verification

37 Michael Leuschel. Homeomorphic Embedding for Online Termination of Symbolic Methods. In
Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Torben Æ. Mogensen, David A. Schmidt, and
I. Hal Sudborough, editors, The Essence of Computation, volume 2566, pages 379–403. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002. Series Title: Lecture Notes in Computer Science.
URL: http://link.springer.com/10.1007/3-540-36377-7_17, doi:10.1007/3-540-36377-7_17.

38 Jia Meng and Lawrence C Paulson. Translating higher-order clauses to first-order clauses.
Journal of Automated Reasoning, 40(1):35–60, 2008.

39 P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure for
permission-based reasoning. In VMCAI, 2016.

40 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer-Verlag, 2020.

41 Ulf Norell. Dependently typed programming in agda. In Proceedings of the 6th International
Conference on Advanced Functional Programming, AFP’08, page 230–266, Berlin, Heidelberg,
2008. Springer-Verlag.

42 Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Aina Niemetz, Mathias Preiner, Clark
Barrett, and Cesare Tinelli. Syntax-guided rewrite rule enumeration for smt solvers. In Mikoláš
Janota and Inês Lynce, editors, Theory and Applications of Satisfiability Testing – SAT 2019,
pages 279–297, Cham, 2019. Springer International Publishing.

43 Lawrence C Paulson and Kong Woei Susanto. Source-level proof reconstruction for interactive
theorem proving. In International Conference on Theorem Proving in Higher Order Logics,
pages 232–245. Springer, 2007.

44 Lawrence C Paulsson and Jasmin C Blanchette. Three years of experience with sledgehammer,
a practical link between automatic and interactive theorem provers. In Proceedings of the 8th
International Workshop on the Implementation of Logics (IWIL-2010), Yogyakarta, Indonesia.
EPiC, volume 2, 2012.

45 Julien Signoles, Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, and
Boris Yakobowski. Frama-c: a software analysis perspective. volume 27, 10 2012. doi:

10.1007/s00165-014-0326-7.
46 William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: An automated prover

for properties of recursive data structures. In Cormac Flanagan and Barbara König, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 407–421, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

47 Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,
Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin. Dependent types and multi-monadic
effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 256–270. ACM, January 2016. URL: https://www.fstar-lang.org/
papers/mumon/.

48 Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: a new
approach to optimization. In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages, pages 264–276, New York, NY,
USA, 2009. ACM. URL: http://www.cs.cornell.edu/~ross/publications/eqsat/, doi:http:

//doi.acm.org/10.1145/1480881.1480915.
49 René Thiemann and Jürgen Giesl. Size-Change Termination for Term Rewriting. volume 2706,

pages 264–278, March 2007. doi:10.1007/3-540-44881-0_19.
50 Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton. Theorem

proving for all: equational reasoning in liquid Haskell (functional pearl). In Proceedings
of the 11th ACM SIGPLAN International Symposium on Haskell, Haskell 2018, pages 132–
144, St. Louis, MO, USA, September 2018. Association for Computing Machinery. doi:

10.1145/3242744.3242756.
51 Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.

Refinement types for haskell. In Proceedings of the 19th ACM SIGPLAN International

http://link.springer.com/10.1007/3-540-36377-7_17
https://doi.org/10.1007/3-540-36377-7_17
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
http://www.cs.cornell.edu/~ross/publications/eqsat/
https://doi.org/http://doi.acm.org/10.1145/1480881.1480915
https://doi.org/http://doi.acm.org/10.1145/1480881.1480915
https://doi.org/10.1007/3-540-44881-0_19
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3242744.3242756

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:29

Conference on Functional Programming, ICFP ’14, page 269–282, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2628136.2628161.

52 Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip
Wadler, and Ranjit Jhala. Refinement reflection: Complete verification with smt. Proc. ACM
Program. Lang., 2(POPL), December 2017. doi:10.1145/3158141.

53 Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and Dan Rosén. Halo: Haskell to
logic through denotational semantics. In Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 431–442, 2013.

54 Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Computer
Science, 73(2):231 – 248, 1990. URL: http://www.sciencedirect.com/science/article/pii/
030439759090147A, doi:https://doi.org/10.1016/0304-3975(90)90147-A.

55 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and
Pavel Panchekha. Egg: Fast and extensible equality saturation. Proceedings of the ACM on
Programming Languages, 5(POPL):1–29, 2021.

56 Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. Nagoya termination tool. In
Rewriting and Typed Lambda Calculi, pages 466–475. Springer, 2014.

ECOOP 2022

https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
http://www.sciencedirect.com/science/article/pii/030439759090147A
http://www.sciencedirect.com/science/article/pii/030439759090147A
https://doi.org/https://doi.org/10.1016/0304-3975(90)90147-A

	1 Introduction
	2 Five Challenges for Automating Term Rewriting
	3 The REST Approach
	3.1 Representation of Term Orderings in REST
	3.2 The REST Algorithm
	3.3 Integrating an External Oracle

	4 Well-Quasi-Orderings and the Ordering Constraint Algebra
	4.1 Well-Quasi-Orderings
	4.1.1 Knuth-Bendix Quasi-Orderings (KBQO)
	4.1.2 Recursive Path Quasi-Orderings (RPQO)

	4.2 Ordering Constraint Algebras
	4.2.1 An Ordering Constraint Algebra for rpo

	5 REST Metaproperties: Soundness, Completeness, and Termination
	6 Implementation of REST
	6.1 The REST Library
	6.2 Integration of REST in Liquid Haskell
	6.2.1 Liquid Haskell and Program Lemmas
	6.2.2 REST for Automatic Lemma Application in Liquid Haskell
	6.2.3 Mutual PLE and REST Interaction

	7 Evaluation
	7.1 Comparison with Other Theorem Provers
	7.2 Comparison with E-matching
	7.2.1 List Involution
	7.2.2 Set Properties

	7.3 Simplification of Equational Proofs

	8 Related Work
	9 Conclusion

